

PUMP DRIVE COMPONENTS

www.jbj.co.uk/couplingelementchart.html

Coupling Element Size Selection Chart

Telephone: 01737 767493 or fill in this form for a complimentary chart.

Coupling Element Size Comparison Chart (up to Spidex S/CJ125 & Dentex B80) Simply size your coupling, decide the shore hardness colour and contact us immediately. This 'Pump Drive Component' catalogue provides technical specifications, power, torque, speeds & other selection data.

If you require a coupling other than a spider type or gear type coupling there are a range of criteria (<u>link to selection table</u>) in specifying the most suitable coupling for your application but we will guide you all the way to obtain the right coupling for power transmission.

For assistance please telephone the jbj Techniques technical office: 01737 767493 or email: <u>info@jbj.co.uk</u>

quality products for mechanical & fluid power

jbj Techniques Limited is ISO certificate committed to international coordination & unification of industrial standards.

- registered in England No: 1185469 -

range of products ATEX certificated $\langle \Sigma \times \rangle$

CONTENTS

quality products for mechanical & fluid power

The details contained within this catalogue are reproduced in accordance with the latest information at going to press	& O	ЭE
--	-----	----

	Page
Anti-vibration / noise reduction components	1 - 3
Spidex couplings	4 - 10
CJ series couplings	11 - 17
G series couplings	18 - 21
Spidex [®] non backlash coupling	22 - 25
Dentex® couplings	26 - 30
Dentex "fi" engine drive couplings	31 - 33
Splined bushes	34
L series bellhousings	35 - 36
RV series bellhousings	37 - 39
Module 3 bellhousings	40 - 42
Popular pump flange details	43
Popular machining codes	44
Cooler bellhousings series KPV	45 - 47
P series foot brackets	48
PTFL & PTFS foot brackets	49
Foot brackets/mounting plates	50
Petrol engine adaptors	51 - 53

Anti-Vibration/Noise Reduction Mountings

Damping Rods

Pump Drive Components

Anti-Vibration/Noise Reduction Mountings

for noise reduction of hydraulic power units

Damping flanges

For use in combination with Raja bellhousings between electric motor and hydraulic pump.

They consist of two aluminium parts which are connected by a rubber coat (Nitrile) without any metal connection.

They are resistant against mineral oils and suitable for working temperatures up to +80°C, for short time +100°C.

The possible noise reduction will be approx. 3 - 8 db(A). Damping flanges are available in two degrees of hardness with the description

N - normal / H - hard.

For bellhousings damped according to VDMA 24561 use type B.

For maximum load contact: jbj Techniques Limited technical office, telephone: 01737 767493 or email: info@jbj.co.uk

Pump Drive Components

Anti-Vibration/Noise Reduction Mountings

for noise reduction of hydraulic power units

Damping rings

For use when vertical mounting (VI-construction) between bellhousing and tank lid or horizontal (B5-construction) mounting position between motor and bellhousing flange.

They consist of two reinforced aluminium rings which are connected by a rubber coat without any metal connection. The used materials (Nitrile) are resistant against mineral oils and suitable for working temperatures up to +80°C.

The possible noise reduction will be approx. 3 - 5 db(A).

Permissible radial weight and bending loads with an operating temperature of + 60°C

$$F_{zul.} \ge F_{pump} + F_{moto}$$

$$Mb_{zul.} \ge F_{motor} \times L1 - F_{pump} \times L2$$

DR-Type	200	250	300	350	400	450	550	660
Fzul (N)	385	755	1520	3780	5040	6800	13390	24720

For maximum load contact: jbj Techniques Limited technical office, telephone: 01737 767493 or email: info@jbj.co.uk

Pump Drive Components

jþi

Introduction to the Spidex[®] Coupling

Spidex couplings are torsional flexible shaft couplings, the operating characteristics of which are two hubs with concave claws, transmitting the torque by meshing with an elastic involute gear ring. The coupling concept gives a reliable, smooth power transmission without torsional oscillation and thus protects the connected machines. Due to the complete flexibility and ductility of the elastomer ring, it compensates for parallel and angular displacements as well as to absorb longitudinal movements of the shafts.

The involute teeth of the elastomer element are crowned in order to avoid edge pressure on the tooth flanks and thus avoid undesirable axial thrust. The puncture proof coupling can be loaded extremely high since the elastic elements are submitted to compression and not to bending moments of force. The elastomer gear ring, made of a newly developed Simirit-Polyurethane of various degrees of shore hardness, has important advantages in comparison with the standard polyurethanes. It is non-ageing, with resistance against hydrolysis (can be used in tropical conditions), non-abrasive, has a high self-damping effect and is also resistant to oil and ozone. It can be used with temperatures ranging from -40°C to +100°C.

Spidex couplings can be used for horizontal as well as for vertical shaft connections, for reversing, intermittent service and are electrically insulating. The operating characteristics and the durability of the coupling are very positively influenced by the high overall precision of the machining, especially the claws, unbalance is reduced to a minimum, running is improved and service life considerably increased.

Application Service Factor (K1)	
	Service Factor (K1)
Uniform operation with small masses to be accelerated.	10
Hydraulic and centrifugal pumps, light generators, blowers, fans, ventilators, belt/screw conveyors.	1.0
Uniform operation with medium masses to be accelerated.	1.2
Sheet metal bending machines, wood working machines, mills, textile machines, mixers.	1.2
Irregular operation, with medium masses to be accelerated.	13
Rotating ovens, printing presses, generators, shredders, winders, spinning machines, pumps for viscous fluids.	1.5
Irregular operation, and shocks, with medium masses to be accelerated.	1.4
Conrete mixers, drop hammers, cable cars, paper mills, compression pumps, propeller pumps, rope winders, centrifuges.	1.4
Irregular operation and heavy shocks, with large masses to be accelerated.	1.0
Excavators, hammer mills, piston pumps presses, rotary boring machines, shears, forge presses, stone crushers	1.0
Irregular operation and very heavy shocks, with very large masses to be accelerated.	1.0
Piston type compressors and pumps without speed variations, heavy roll sets, welding machines, brick presses, stone crushers.	1.8

Applica	ation Service F	actor for Start	s per Hour (K2)	Application S	Service Factor	for Ambient	Temperature (K3)
Starts per hour	100	200	400	800	Ambient Temperature	-30 to +30°C	+40°C	+60°C	+80°C
Service Factor (K2)	1.0	1.2	1.4	1.6	Sevice Factor (K3)	1.0	1.2	1.4	1.8

Total service factor for K = K1 x K2 x K3

Displacement values

Valid for 1500rpm and for a given temperature range -25°C to +30°C. For other speeds and temperature ranges please contact:

Pump Drive Components

jbj

Torque Ratings for the Spidex[®] Coupling

		Torque (Nm)	Maximum S	oeed (1/min)	Win	d-up	Dynamic Torsional Stiffness (Nm/rad)				
Size	Nominal	Maximum -	Varying Load	at peripher	al speed =	An T	igle T	400% 7	750/ 7	500/ T	05%/ T	
14/1175		kmax		30 m/s*	40 m/s	l _{kn}	kmax	100% I _{kn}	/5% I _{kn}	50% I _{kn}	25% I _{kn}	
		Polyurethane	Spider: 92° Sh	ore Hardness	(for general a		application	ns) temp. range \rightarrow	40° to +90°C (no	$rmal) -50^{\circ}C$ to 12	20°C (max)	
14	10.0	20	2.0	14000	19000	6.4	10-	0.38 X 10 ³	1.05×10^{3}	0.24×10^{3}	0.14×10^{3}	
24	35.0	70	9.1	10600	14000			4 86 x 10 ³	3.98 x 10 ³	3.01 x 10 ³	1 79 x 10 ³	
28	95.0	190	25.0	8500	11800			10.90 x 10 ³	8.94 x 10 ³	6.76 x 10 ³	4.01 x 10 ³	
38	190.0	380	49.0	7100	9500			21.05 x 10 ³	17.26 x 10 ³	13.05 x 10 ³	7.74 x 10 ³	
42	265.0	530	69.0	6000	8000			23.74 x 10 ³	19.47 x 10 ³	14.72 x 10 ³	8.73 x 10 ³	
48	310.0	620	81.0	5600	7100			36.70 x 10 ³	30.09 x 10 ³	22.75 x 10 ³	13.49 x 10 ³	
55	410.0	820	107.0	4750	6300			50.72 x 10 ³	41.59 x 10 ³	31.45 x 10 ³	18.64 x 10 ³	
65	625.0	1250	163.0	4250	5600	3.2°	5°	97.13 x 10 ³	79.65 x 10 ³	60.22 x 10 ³	35.70 x 10 ³	
75	1280.0	2560	333.0	3550	4750			113.32 x 10 ³	92.92 x 10 ³	70.26 x 10 ³	41.65 x 10 ³	
90	2400.0	4800	624.0	2800	3750			190.09 x 10 ³	155.87 x 10 ³	117.86 x 10 ³	69.86 x 10 ³	
100	3300.0	6600	858.0	2500	3350			253.08 x 10 ³	207.53 x 10 ³	156.91 x 10 ³	93.01 x 10 ³	
110	4800.0	9600	1248.0	2240	3000			311.61 x 10 ³	255.52 x 10 ³	193.20 x 10 ³	114.52 x 10 ³	
125	6650.0	13300	1729.0	2000	2650			474.86 X 10°	389.39 X 10 ³	294.41 X 10°	174.51 x 10 ³	
140	12800.0	25600	2223.0	1600	2360			800.36 x 10 ³	541.60×10^{3}	409.50 X 10 ³	242.73×10^{3}	
160	12600.0	25600	3328.0	1400	2000			2568 56 x 10°	730.10 X 10°	1502.03 X 10°	327.21 X 10°	
100	10000.0	37300	4849.0	1400	1000		ta) tanan ua	2308.30 X 10°	2100.22 x 10°	1392.51 x 10 ⁻	943.95 X 10	
	RED PO	yuretnane Sp	ider: 98° Shore	Hardness (for	r nign torque r	equiremen	ts) temp. ra	inge -30° to +100	C (normal) -40°	to 120°C (max)		
14	12.5	25	3.3	19000	-	6.4°	10°	0.56 x 10 ³	0.46 x 10 ³	0.35 x 10 ³	0.21 x 10 ³	
19	17.0	34	4.4	14000	19000			2.92 x 10 ³	2.39 x 10 ³	1.81 x 10 ³	1.07 x 10 ³	
24	60.0	120	16.0	10600	14000			9.93 x 10 ³	8.14 x 10 ³	6.16 x 10 ³	3.65 x 10 ³	
28	160.0	320	42.0	8500	11800			26.77 x 10 ³	21.95 x 10 ³	16.60 x 10 ³	9.84 x 10 ³	
38	325.0	650	85.0	7100	9500			48.57 X 10°	39.83 X 10°	30.11 X 10°	17.85 X 10°	
42	525.0	900	117.0	5600	7100			65 20 x 10 ³	44.09×10^{-1}	10 48 x 10 ³	20.03×10^{3}	
55	685.0	1370	178.0	4750	6300			94 97 x 10 ³	77 88 x 10 ³	58 88 x 10 ³	34 90 x 10 ³	
00	BED Behur	ioro	n OE ^e Shara Hay			dia analiaa	l tione) temp		100°C (normal)	40° to 120°C (m	04.00 × 10	
	RED Polyur	ethane Spide	1. 95 Shore Har	uness (ior ge		uic applica	luons) temp	5. range - 50 to +	TOU C (normal) -		ax)	
65	940.0	1880	244.0	4250	5600	3.2°	5°	129.51 x 10 ³	106.20 x 10 ³	80.30 x 10 ³	47.60 x 10 ³	
75	1920.0	3840	499.0	3550	4750			197.50 x 10 ³	161.95 x 10 ³	122.45 x 10 ³	72.58 x 10 ³	
90	3600.0	7200	936.0	2800	3750			312.20 x 10 ³	256.00 x 10 ³	193.56 x 10 ³	114.73 x 10 ³	
100	4950.0	9900	1287.0	2500	3350			383.26 x 10 ³	314.27 x 10 ³	237.62 X 10 ³	140.85 x 10 ³	
10	10000.0	20000	1872.0	2240	3000			1242 64 x 10 ³	1101 70 x 10°	427.84 X 10°	253.60 X 10°	
125	12800.0	20000	3328.0	1800	2000			1343.04×10^{3} 1424.58×10^{3}	1168 16 x 10 ³	883.24 x 10 ³	493.79 X 10 ³	
140	19200.0	38400	4992.0	1500	2000			2482.23×10^3	2035.43×10^3	1538 98 x 10 ³	912 22 x 10 ³	
180	28000.0	56000	7280.0	1400	1800			3561.45×10^3	2000.40 x 10 ³	2208 10 x 10 ³	1308 84 x 10 ³	
100	BILLE DA	hurothono Si	nidari 200.0	Hardnass (fr	ar good domp	ing proport	tion) tomp	$10001.40 \times 10^{\circ}$	$^{\circ}C$ (normal) 60°	$2200.10 \times 10^{\circ}$	1000.04 x 10	
	BLUE PC	Siyuremane Si	Sider: 60 Shore	Hardness (IC	or good damp	ing properi	lies) temp.	1ange -40 to +60				
14	4.0	8.0	1.0	19000	-	6.4°	10°	-	-	-	-	
19	4.9	9.7	1.3	14000	19000			0.25 x 10 ³	0.21 x 10 ³	0.17 x 10 ³	0.11 x 10 ³	
24	17.0	34.0	4.4	10600	14000			0.90 x 10 ³	0.75 x 10 ³	1.52 x 10 ³	1.03 x 10 ³	
28	46.0	92.0	12.0	8500	11800			2.30 x 10°	1.93 X 10°	1.52 X 10°	1.03 X 10°	
30	93.0	165.0	24.0	7100	9500			4.10 x 10 ²	3.45 X 10-	2.75 X 10 ⁻	1.65 X 10-	
GRE	EN Polyuret	nane Spider: (64° Shore Hardr	iess** (for higi	n torque & nur	niaity envir	onments) te	emp. range -20°C	; to +100°C(norn	nal) -30° to +120°	C (max)	
14	16	32	4.2	19000	-	4.5°	7.0°	0.76 x 10 ³	0.62 x 10 ³	0.47 x 10 ³	0.28 x 10 ³	
19	21	42	5.5	14000	19000			5.35 x 10 ³	4.39 x 10 ³	3.32 x 10 ³	1.97 x 10 ³	
24	75	150	19.5	10600	14000			15.11 x 10 ³	12.39 x 10 ³	9.37 x 10 ³	5.55 x 10 ³	
28	200	400	52.0	8500	11800			27.52 x 10 ³	22.57 x 10 ³	17.06 x 10 ³	10.12 x 10 ³	
38	405	810	105.0	7100	9500			70.15 x 10 ³	57.52 x 10 ³	43.49 x 10 ³	25.78 x 10 ³	
42	560	1120	146.0	6000	8000			79.86 x 10 ³	65.49 x 10 ³	49.52 x 10 ³	29.35 x 10 ³	
48	000	1310	170.0	3600	6200			95.51 X 10°	78.32 X 10°	59.22 X 10°	35.10 X 10°	
55 65	1175	2350	215.0	4750	5600	2.5°	3.6°	107.92 X 10 ³	123 00 x 10 ³	00.91 X 10 ³	55 53 x 10 ³	
75	2400	4800	624.0	3550	4750	2.5	5.0	248 22 x 10 ³	123.90×10^{-1}	153 90 x 10 ³	91 22 x 10 ³	
90	4500	9000	1170.0	2800	3750			674.52×10^3	553 11 x 10 ³	418 20 x 10 ³	247 89 x 10 ³	
100	6185	12370	1608.0	2500	3350			861 17 x 10 ³	706 16 x 10 ³	533 93 x 10 ³	316 48 x 10 ³	
110	9000	18000	2340 0	2240	3000			1138.59 x 10 ³	933.64 x 10 ³	705.92 x 10 ³	418.43 x 10 ³	
125	12500	25000	3250.0	2000	2650			1435.38 x 10 ³	1177.01 x 10 ³	889.93 x 10 ³	527.50 x 10 ³	
140	16000	32000	4160.0	1800	2360			1780.73 x 10 ³	1460.20 x 10 ³	1104.05 x 10 ³	654 42 x 10 ³	
160	24000	48000	6240.0	1500	2000			3075.80 x 10 ³	2522.16 x 10 ³	1907.00 x 10 ³	1130.36 x 10 ³	
180	35000	70000	9100.0	1400	1800			6011.30 x 10 ³	4929.27 x 10 ³	3727.01 x 10 ³	2209.15 x 10 ³	
	* F	or peripheral s	peeds of over V	= 30 m/s it is r	necessary to u	ise either s	teel or SG	iron. Dynamic ba	lancing is also n	ecessary.		
			** When using	64 shore har	dness spider,) will pormally	steel and r	nodular iron	hubs should be u	used.			

92° shore spiders (white) will normally be supplied unless otherwise specified.

Pump Drive Components

A/A Hub Combination Standard Coupling

Lovejoy

Material: Die cast aluminium

Turpo		Bores		Dimensions (mm)											With d maximum but without key		
Type	Pre	Finish	Bores	•	Ba		11812	F		h	C	dh	Ц*	Weight	Moment of		
	Bore	Min.	Max.		Da	-		-				un		Kg	Inertia Kg/m2		
S 19 Sint./St	-	6	19	40	32	66	25	16	2.0	12	20	18	14	0.35	0.00005		
S 24 Sint./St	-	10	24	55	40	78	30	18	2.0	14	24	27	16	1.00	0.00025		
S 28 Sint./St	-	12	28	65	45	90	35	20	2.5	15	28	30	18	1.60	0.00040		
S 38 Sint./St	-	14	38	80	66	114	45	24	3.0	18	37	38	19	2.30	0.00100		
S 42 GG/GGG/St	-	19	42	95	75	126	50	26	3.0	20	40	46	21	3.60	0.00200		
S 48 GG/GGG/St	-	19	48	105	85	140	56	28	3.5	21	45	51	22	4.80	0.00300		
S 55 GG/GGG/St	-	19	55	120	98	160	65	30	4.0	22	52	60	23	7.40	0.00600		
S 65 GG/GGG/St	-	22	65	135	115	185	75	35	4.5	26	61	68	27	10.90	0.01250		
S 75 GG/GGG/St	30	30	75	160	135	210	85	40	5.0	30	69	80	31	17.70	0.02500		
S 90 GG/GGG/St	30	40	90	200	160	245	100	45	5.5	34	81	100	35	29.50	0.06900		

Material: cast iron = GG; SG iron = GGG; steel = ST; SINT. = Sintered Steel

H* is the minimum dimension required for the disassembly of the components in the radial direction. Finish bore acc. to ISO standard H7, keyway acc. to DIN 6885, sheet 1 (JS9). Weight and moment of inertia in relation to the materials AI/GG/GGG with max. diameter without keyway.

Pump Drive Components

A/B Hub Combination Standard Coupling

Material: Die cast aluminium

	Bores										Dimens	sions ((mm)					With d max. but without		
Туре		Hub A			Hub B												key in GG/SINT.			
Type	Pre	Finisl	n Bore	Pre	Finisł	n Bore		Ba	Dh			E		_ h	~	طالم	Ц*	Weight	Moment of	
	Bore	Min.	Max.	Bore	Min.	Max.	A	Ба	во		LIQLZ	E	5	а 		an	п	Kg	Inertia Kg/m2	
S 19/24 Sint./St	-	6	19	-	19	24	40	32	39	66	25	16	2.0	12	20	18	14	0.2	0.00005	
S 24/32 Sint./St	-	10	24	-	24	32	55	40	52	78	30	18	2.0	14	24	27	16	0.5	0.00025	
S 28/38 Sint./St	-	12	28	-	28	38	65	45	62	90	35	20	2.5	15	28	30	18	0.8	0.00040	
S 38/45 Sint./St	-	14	38	36	38	45	80	66	77	114	45	24	3.0	18	37	38	19	1.6	0.00100	
S 42/55 GG/GGG/St	-	19	42	40	42	55	95	75	94	126	50	26	3.0	20	40	46	21	3.60	0.00200	
S 48/60 GG/GGG/St	-	19	48	46	48	60	105	85	102	140	56	28	3.5	21	45	51	22	4.80	0.00300	
S 55/70 GG/GGG/St	-	19	55	53	55	70	120	98	118	160	65	30	4.0	22	52	60	23	7.40	0.00600	
S 65/75 GG/GGG/St	-	22	65	63	65	75	135	115	132	185	75	35	4.5	26	59	68	27	10.9	0.01250	
S 75/90 GG/GGG/St	-	30	75	73	75	90	160	135	158	210	85	40	5.0	30	65	80	31	17.7	0.02500	
S 90/100 GG/GGG/St	30	40	90	85	90	100	200	160	180	245	100	45	5.5	34	81	100	35	29.5	0.06900	

Material: cast iron = GG; SG iron = GGG; steel = ST & SINT. = Sintered Steel

H* is the minimum dimension required for the disassembly of the components in the radial direction. Finish bore acc. to ISO standard H7, keyway acc. to DIN 6885, sheet 1 (JS9). Weight and moment of inertia in relation to the materials AI/GG/GGG with max. diameter without keyway.

Pump Drive Components

B/B Hub Combination Standard Coupling

Tune		Bores					Di	mensio	ns (mm)					L2 Extended	With d max key	. but without in GG
туре	Pre	Finish	Bores	^	Bh	1	11812	F	e	h	C	dh	Ц*	Hub	Weight	Moment of
	Bore	Min.	Max.	~	БО	-	LIQLZ	-	5	U	C	un	п	Lengui	Kg	Kg/m2
S 14/16 Sint.	-	4	16	30	30	35	11	13	1.5	10	-	10	12	18.5	00.14	0.00002
S 19/24 Sint.	-	6	24	40	40	66	25	16	2.0	12	-	18	14	55	00.35	0.00005
S 24/32 Sint.	-	7	32	55	55	78	30	18	2.0	14	-	27	16	60	01.00	0.00020
S 28/38 Sint.	-	9	38	65	65	90	35	20	2.5	15	-	30	18	80	01.60	0.00070
S 38/45 Sint.	36	38	45	80	77	114	45	24	3.0	18	37	38	19	110	02.30	0.00100
S 42/55 GG/GGG	40	42	55	95	94	126	50	26	3.0	20	40	46	21	110	03.60	0.00300
S 48/60 GG/GGG	46	48	60	105	102	140	56	28	3.5	21	45	51	22	110	04.80	0.00500
S 55/70 GG/GGG	53	55	70	120	118	160	65	30	4.0	22	52	60	23	140	07.40	0.01000
S 65/75 GG/GGG	63	65	75	135	132	185	75	35	4.5	26	59	68	27	140	10.90	0.01830
S 75/90 GG/GGG	73	75	90	160	158	210	85	40	5.0	30	65	80	31	195	17.70	0.04100
S 90/100 GG/GGG/St	79	81	100	200	180	245	100	45	5.5	34	81	100	35	200	29.50	0.09000
S 100 GG/GGG/St*	40	42	110	225	200	270	110	50	6.0	38	89	113	39	-	43.50	0.15400
S 110 GG/GGG/St *	60	62	125	255	230	295	120	55	6.5	42	96	127	43	-	63.00	0.09100
S 125 GG/GGG/St *	60	62	145	290	265	340	140	60	7.0	46	112	147	47	-	95.00	0.57500
S 140 GG/GGG/St **	51	51	160	320	255	375	155	65	7.5	50	155	165	52	-		
S 160 GG/GGG/St **	51	51	185	370	290	425	175	25	9.0	57	175	190	70	-	On r	equest
S 180 GG/GGG/St **	51	51	200	420	325	475	185	85	10.5	64	185	220	82	-		

Material: cast iron = GG; SG iron = GGG; steel = ST & SINT. * Hubs only available in GGG ** Hubs only available in steel

H* is the minimum dimension required for the disassembly of the components in the radial direction. Finish bore acc. to ISO standard H7, keyway acc. to DIN 6885, sheet 1 (JS9). Weight and moment of inertia in relation to the materials AI/GG/GGG with max. diameter without keyway.

Hub Designs for the Spidex[®] Coupling

www.jbj.co.uk

•
Lovejoy

ibi			
			Lovejoy
Keyway with Set Screw (KW) Standard method of securing a hub to a shaft. Clamping style recommended for backlash free torque transmission		Without Keyway with Set Screw (W/SS) Set screw used to secure hub to shaft	
Spline Hub with Set Screw (W/SS) Hub bored to accept standard S.A.E. and metric spline, secured with set screw to shaft		Spline Hub with Clamp Hub bored to accept standard S.A.E. and metric spline, secured utilizing clamping feature	
Spline Hub with L-Loc Hub bored to accept standard S.A.E. and metric spline using the more efficient L-Loc feature to secure hub on shaft		Clamping Hub with Single Slot without Keyway (SC) Zero backlash clamping style for torque transmission. Torque capacity of hub depends on bore sizes. Sizes: S14-19	A A
Clamping Hub with Single Slot with Keyway (CWK) Zero backlash clamping style with keyway for torque transmission. Sizes: S14-19			

Lovelov

Spidex[®] Special Bores

Pump Drive Components

jb

Taper 1:8

ATOS, Casappa, Dowty, Garbe, Lahmeyer, Jotti & Strozzi, Marzocchi,

Plessey, Salami, Turolla etc.

Codo		Dimensi	ons (mm)	
Code	d	b + 0.05	t2	L
N/1	9.750	2.40	1.3	17.0
N/1c	11.600	3.00	2.0	16.5
N/1e	13.000	2.40	1.6	21.0
N/1d	14.000	3.00	2.2	17.5
N/1b	14.300	3.20	2.2	19.5
N/2	17.287	3.20	1.6	24.0
N/2a	17.287	4.00	2.1	24.0
N/3	22.002	3.99	2.1	28.0
N/4	25.463	4.78	3.4	36.0
N/4b	25.463	5.00	3.9	36.0
N/4a	27.000	4.78	3.0	32.5
N/4g	28.450	6.00	2.1	38.5
N/5	33.176	6.38	3.4	44.0
N/5a	33.176	7.00	3.4	44.0
N/6	43.057	7.95	3.4	51.0
N/6a	41.150	8.00	3.1	42.5

In front of theN put the relevant size of the coupling, and short

description of the pump.

Taper 1:5

Bosch, Bucher, Kracht, Leduc, Dusterloh etc.

Codo		Dimensi	ons (mm)	
Code	d + 0.05	b (j9)	t2	L
A10	9.85	2	1.0	11.5
As12	11.85	3	1.8	16.5
B17	16.85	3	1.8	18.5
C20	19.85	4	2.2	21.5
Cs22	21.95	3	1.8	21.5
D25	24.85	5	2.9	26.5
E30	29.85	6	2.6	31.5
F35	34.85	6	2.6	36.5
G40	39.85	6	2.6	41.5

Taper 1:10

Parker Hannifin NMF, ATE - Teves etc.

Codo	Dimensions (mm)										
Code	d + 0.05	b (j9)	d/2 + t2	L							
PC 20	19.95	5	12.1	32							
PD 25	24.95	6	14.1	45							
PE 30	29.75	8	17.0	50							

Fitting instructions are available from the named firms.

Also to suit:

Commercial, Danfoss, Denison, Dowty, Racine Rex, Rexroth, Schwelm, Towler, Vickers, Vickers-Reichert, Dusterloh, Langen, & Co. etc.

Parallel Shafts

Codo		Dimensi	ons (mm)
Code	d H7	b	(d+t2) + 0.05
4.0	12.70	3.18	14.07
5.0.1	15.87	4.76	19.00
6.1	19.05	4.76	21.60
7 <u>.</u> 1	22.23	4.76	24.60
7.2	22.23	6.35	25.07
8.1	25.40	4.76	27.68
8.2	25.40	6.35	28.09
9.2	28.58	6.35	31.32
10.2	31.75	6.35	34.60
10.3	31.75	7.94	35.21
11.3	34.93	7.94	38.60
11.5	34.93	9.53	41.00
12.5	38.10	9.53	42.27
13.5	41.28	9.53	45.47
14.4	44.45	11.11	49.30
14.5	14.5 44.45		49.50
15.8	47.68	12.70	53.11

Details on request for: Abex-Denison - SAE 16/32 pitch, Bosch - DIN

5482, Bruninghaus - DIN 5480, Hydromatik - DIN 5480, LindeGuldner -

DIN 5482, SauerGetriebe - SAE 16/32 pitch, ZF Sundstrand - SAE 16/32 pitch.

CJDB Couplings

Pump Drive Components

jbj

177.5

198.0

9.0

10.5

M24

M24

Lovejoy L PCD Ba А dh ¥ ¥ ¥ HE -∱ BH x Z l**∢**b≯ s * L1 L1 ← E L2 U Dimensions Size Ва Е L2 PCD ΒН Z No. Α L L1 U b dh s 30.5 2.0 М5 35.5 2.5 M6 45.5 3.0 M8 51.0 3.0 M8 57.0 3.5 M8 66.0 4.0 M10 76.0 4.5 M10 86.5 5.0 M12 101.5 5.5 M16 111.5 6.0 M16 122.0 M20 6.5 142.0 7.0 M20 157.5 7.5 M20

CJSB Couplings

Pump Drive Components

jbj —															
A PCD Ba HD Bb HD Bb															
0:							D	imensions	6						
Size	Α	Ba	Bb	E	HD	L	L1	L2	U	b	dh	s	PCD	BH	Z No.
24	55	36	55	18	40	86	30	30.5	26	14	27	2.0	45	M5	8
28	65	42	65	20	48	100	35	35.5	30	15	30	2.5	54	M6	8
38	80	52	80	24	66	124	45	45.5	34	18	38	3.0	66	M8	8
42	95	62	95	26	75	138	50	51.0	38	20	46	3.0	80	M8	12
48	105	70	105	28	85	152	56	57.0	40	21	51	3.5	90	M8	12
55	120	80	120	30	98	176	65	66.0	46	22	60	4.0	102	M10	8
65	135	94	135	35	115	201	75	76.0	51	26	62	4.5	116	M10	12
75	160	108	160	40	135	229	85	86.5	59	30	80	5.0	136	M12	15
90	200	142	200	45	160	265	100	101.5	65	34	100	5.5	172	M16	15
100	225	158	225	50	180	295	110	111.5	75	38	113	6.0	195	M16	15
110	255	178	255	55	200	321	120	122.0	81	42	127	6.5	218	M20	15
125	290	206	290	60	230	370	140	142.0	90	46	147	7.0	252	M20	15
140	320	235	320	65	255	409	155	157.5	99	50	165	7.5	282	M20	15
160	370	270	370	75	290	463	175	177.5	113	57	190	9.0	325	M24	15
180	420	315	420	85	325	515	195	198.0	125	64	220	10.5	375	M24	18

Flange is available in steel only.

CJLFH Couplings

Pump Drive Components

															Lovejoy
Bb Ba dh dh dh dh dh dh dh dh															
Size		1	I	1	I		ſ	Dimension	IS	1	1	1	1	1	1
	A	A1	Ba	Bb	D4	D6	D7	E	L	L1	b	dh	s	BH	Z No.
24	80	55	40	55	65	8	1.5	18	56	30	14	27	2.0	5.5	5
28	100	65	48	65	80	10	1.5	20	65	35	15	30	2.5	6.6	6
38	115	80	66	80	95	10	1.5	24	79	45	18	38	3.0	9.0	6
42	140	95	75	95	115	12	2.0	26	88	50	20	46	3.0	9.0	6
48	150	105	85	105	125	12	2.0	28	96	56	21	51	3.5	9.0	8
55	175	120	98	120	145	16	2.0	30	111	65	22	60	4.0	11.0	8
65	190	135	115	135	160	16	2.0	35	126	75	26	68	4.5	11.0	10
75	215	160	135	160	185	19	2.5	40	144	85	30	80	5.0	13.5	10
90	260	200	160	200	225	20	3.0	45	165	100	34	100	5.5	17.5	12
100*	285	225	200	225	250	25	4.0	50	185	110	38	113	6.0	17.5	12
110*	330	255	230	255	290	26	4.0	55	201	120	42	127	6.5	22.0	12
125*	370	290	265	290	325	30	5.0	60	230	140	46	147	7.0	22.0	16
140**	410	320	255	320	360	34	5.0	65	254	155	50	165	7.5	22.0	16
160**	460	370	290	370	410	38	5.0	75	288	175	57	190	9.0	26.0	16
180**	520	420	325	420	465	40	5.5	85	320	195	64	220	10.5	26.0	16

Alternative flange machining available on request.

Material: SNT, GG, GGG, ST

* Hubs only available in GGG

** Hubs only available in steel

CJSFH Couplings

Pump Drive Components

						8 s			D3 F D3 F D	Z					
								Dimension	IS						
Size	A	Ва	Bb	D3	D6	D7	E	L	L1	b	dh	s	PCD	вн	Z No.
24	55	40	55	36	8	1.5	18	56	30	14	27	2.0	45	M5	8
28	65	48	65	44	10	1.5	20	65	35	15	30	2.5	54	M6	8
38	80	66	80	54	10	1.5	24	79	45	18	38	3.0	66	M8	8
42	95	75	95	65	12	2.0	26	88	50	20	46	3.0	80	M8	16
48	105	85	105	75	12	2.0	28	96	56	21	51	3.5	90	M8	16
55	120	98	120	84	16	2.0	30	111	65	22	60	4.0	102	M10	8
65	135	115	135	96	16	2.0	35	126	75	26	68	4.5	116	M10	16
75	160	135	160	112	19	2.5	40	144	85	30	80	5.0	136	M12	20
90	200	160	200	145	20	3.0	45	165	100	34	100	5.5	172	M16	20
100*	225	200	225	165	25	4.0	50	185	110	38	113	6.0	195	M16	20
110*	255	230	255	180	26	4.0	55	201	120	42	127	6.5	218	M20	20
125*	290	265	290	215	30	5.0	60	230	140	46	147	7.0	252	M20	20
140**	320	255	320	245	34	5.0	65	254	155	50	165	7.5	282	M20	20
160**	370	290	370	280	38	5.0	75	288	175	57	190	9.0	325	M24	20

Alternative flange machining available on request.

325

420

330

40

5.5

85

320

195

64

220

10.5

375

M24

24

Material: SNT, GG, GGG, ST

420

180**

* Hubs only available in GGG

** Hubs only available in steel

Pump Drive Components

jbj

CJDLF Couplings

	A A A A A A A A A A													
Size		1	T	T	1	Dime	nsions	T	1	I	П	1		
0120	A	D3	D4	D6	D7	E	L	b	dh	s	BH	Z No.		
24	80	55	65	8	1.5	18	34	14	27	2.0	5.5	5		
28	100	65	80	10	1.5	20	40	15	30	2.5	6.6	6		
38	115	80	95	10	1.5	24	44	18	38	3.0	9.0	6		
42	140	95	115	12	2.0	26	50	20	46	3.0	9.0	6		
48	150	105	125	12	2.0	28	52	21	51	3.5	9.0	8		
55	175	120	145	16	2.0	30	62	22	60	4.0	11.0	8		
65	190	135	160	16	2.0	35	67	26	68	4.5	11.0	10		
75	215	160	185	19	2.5	40	78	30	80	5.0	13.5	10		
90	260	200	225	20	3.0	45	85	34	100	5.5	17.5	12		
100	285	225	250	25	4.0	50	100	38	113	6.0	17.5	12		
110	330	255	290	26	4.0	55	107	42	127	6.5	22.0	12		
125	370	290	325	30	5.0	60	120	46	147	7.0	22.0	16		
140	410	320	360	34	5.0	65	133	50	165	7.5	22.0	16		
160	460	370	410	38	5.0	75	151	57	190	9.0	26.0	16		
180	520	420	465	40	5.5	85	165	64	220	10.5	26.0	16		

Alternative flange machining available on request. Material: GG (Cast Iron)

Pump Drive Components

jbj

Flange to flange design available for applications requiring space saving, compact connections.

Shaft to flange design is also available for special application situations requiring an alternative connection.

Rago

CJSPC Couplings

Pump Drive Components

jbj

Hubs available in aluminium, sintered iron and steel.

Spacer style features an aluminium spacer piece.

Comes with two inserts to increase damping and parallel misalignment capabilities.

	- d	• L • •				- d					
				s —				Drive	Prider Data	10	
		ch						Drive a	Dimonoi	is 	
	1	15-1		1 m			Ref.	D	R		F
	-	JI-	0-20-3	y		-	R100	40	18 1	2 2	16
					Hub	Dimensions	(mm)				
Туре	D	L	d	I	s	у	е	Ø	Taper	ch	h
SG 105	40	17.5	22	9.5	-	17	7.0	6.0	-	2.00	7.0
SG 105P	40	17.5	22	9.5	-	17	7.0	7.0	-	2.00	8.0
SG 101P	40	17.5	22	9.5	-	-	1.5	9.8	1.8	2.41	10.8
SG 100ZB	40	14.0	22	6.0	-	16	3.0	10.0	1.5	2.00	11.0
SG 110	40	17.5	22	9.5	-	-	-	10.0	-	3.00	11.4
SG 101C	40	14.0	22	6.0	-	20	1.0	12.0	-	3.00	13.6
SG 112	40	17.5	22	9.5	-	20	1.0	12.0	-	4.00	13.8
SG 114 - 23	40	23.0	26	15.0	-	-	-	14.0	-	5.00	16.3
SG 101M	40	18.0	26	8.0	2	-	-	14.2	1.8	3.00	15.6
SG 111 - 15	40	15.5	22	7.5	-	-	-	11.0	-	4.00	12.8
SG 109	40	17.5	22	9.5	-	-	-	9.0	-	3.00	10.5
SG 111	40	21.0	26	7.5	-	-	-	11.0	-	4.00	12.8
SG 114	40	28.0	26	15.0	-	-	-	14.0	-	5.00	16.3
SG 119	40	48.0	35	43.0	-	-	-	19.0	-	6.00	21.8
SG 124	40	48.0	44	45.0	-	-	-	24.0	-	8.00	27.3

Material : Light Alloy

Max. Torque = 10 NM

www.jbj.co.uk

G Series Coupling

jbj

	- a					- d		Dr	ive Spider D	etails	
		- ch		1.1					Dime	nsions (mm)	
	(1		19		1.00		Ref.	D R	U T	Е
		41		× 🗆			F	200 6	65 29	15 2.5	20
	-	Ø			1						
Туре		1	-	1	Hub	Dimensions	(mm)	1		1	
	D	L	d	1	S	У	e	Ø	Taper	ch	h
SG 201P	65	23.5	29	13.5	-	24	9	9.55	1:8	2.41	10.7
SG 201C	65	23.5	29	13.5	-	24	11	12.00	-	3.00	13.6
SG 212	65	23.0	29	13.0	-	-	-	12.00	-	4.00	13.8
SG 200P	65	23.5	29	13.5	-	24	4.5	12.70	1.0	2.41	14.5
SG 2020	65	22.5	35	13.5	-		4	14.00	1.0	4.00	16.7
SG 216	65	23.5	30	13.5	_		-	16.00	_	4.00	17.8
SG 216F	65	23.5	39	13.5	_	_	_	16.00	_	5.00	18.3
SG 200ZF	65	23.5	35	13.5	_	34	4	17.00	1:5	3.00	19
SG 217	65	23.5	39	13.5	_	-	-	17.00	-	5.00	19.3
SG 202P	65	23.5	39	13.5	_	-	-	17.30	1:8	3.18	18.25
SG 202	65	23.5	39	13.5	_	-	-	17.30	1:8	4.00	18.45
SG 218F	65	23.5	36	13.5	-	-	-	18.00	-	5.00	20.50
SG 218	65	23.5	36	13.5	-	-	-	18.00	-	6.00	20.80
SG 219.23	65	23.5	36	13.5	-	-	-	19.00	-	5.00	21.30
SG 219F	65	23.5	36	13.5	-	-	-	19.00	-	6.00	21.80
SG 206.1	65	28.0	46	23.0	-	-	-	19.05	-	4.76	21.60
SG 220	65	44.0	46	34.0	-	-	-	20.00	-	6.00	22.80
SG 222	65	36.0	42	26.0	-	-	-	22.00	-	6.00	24.80
SG 203	65	41.0	43	27.0	-	-	13	22.10	1:8	4.00	23.60
SG 207.1	65	44.0	45	34.0	-	-	-	22.22	-	4.76	25.00
SG 207.2	65	44.0	45	34.0	-	-	-	22.22	-	6.35	25.70
SG 224F	65	44.0	46	34.0	-	-	-	24.00	-	6.00	26.50
SG 2002G	65	39.0	42	24.0	-	36	13	24.80	1:5	5.00	27.40
SG 225	65	44.0	42	35.0	-	-	-	25.00	-	8.00	28.30
SG 203.5	65	39.0	42	26.0	-	-	0	25.20	1:8	5.00	27.60
SG 215	65	44.U 22.5	44 20	12.5	-	-	-	15.00	-	5.00	29.10 17.20
SG 208 1	65	23.5 44 0	29 <u>4</u> 1	34.0	_	_	_	25.40	_	4.76	28.40
SG 214 24	65	24.0	36	13.5	_	-	_	14.00	-	5.00	16.30
SG 219	65	44 0	36	34.0	_	_	-	19.00	_	6.00	21.80
SG 224	65	44.0	46	34.0	_	_	-	24 00	_	8.00	27.30
SG 228	65	54.0	50	34.0	_	_	_	28.00	_	8.00	31.30
SG 228.44	65	44 0	50	34.0	_	_	_	28.00	_	8.00	31.30
SG 228.58	65	58.0	50	42.0	_	<u> </u>	_	28.00	_	8.00	31 30
SG 238	65	80.0	65	80.0	-	_	-	38.00	-	10.00	41.30

Material : Light Alloy

Max. Torque = 95 NM

		•L				- d.					
		1.5.2						Drive	Spider Deta	ails	
	-	- ch							Dimens	ions (mm)	
	(5:		10			Ref.	D	R	UT	Е
		Ti		, E			R300	80	38	18 3	24
		Ø				Dimensions	: (mm)				
Туре			d			v	, (1111)	a	Tapor	ch	h
SG 301M	80	21.0	42	8.0	3	y 24	2.0	14.20	1.8	3.00	15.6
SG 302C	80	21.0	42	11.0	_	24	5.5	14.20	1.0	4.00	16.7
SG 316	80	25.0	42	10.0	10			16.00	_	5.00	18.3
SG 300ZE	80	23.0	42	8.0				16.50	1.5	3.00	18.5
SG 302P	80	22.0	42	85	_		-	17.30	1.5	3.00	18.3
SG 302	80	22.5	42	0.5	_	_	-	17.30	1.0	4.00	18.4
SG 302	80	22.5	42	19.0	10	-	-	19.00	1.0	4.00	20.9
SC 210	80	30.0	40	10.0	10	-	-	10.00	-	6.00	20.8
SC 306 4	00	30.0	40	19.0	10	-	-	19.00	-	0.00	21.0
SG 306.1	80	21.0	48	0.5	10	-	-	19.05	-	4.76	21.6
SG 306.1L	80	34.0	48	18.0	10	-	-	19.05	-	4.76	21.6
SG 320	80	34.0	48	21.0	10	-	-	20.00	-	6.00	23.0
SG 322	80	34.0	48	21.0	10	-	-	22.00	-	6.00	25.0
SG 303	80	38.0	55	18.0	-	36	11.0	22.00	1:8	4.00	23.5
SG 307.1	80	34.0	48	21.0	10	-	-	22.22	-	4.76	24.5
SG 307.2	80	34.0	48	21.0	10	-	-	22.22	-	6.35	25.7
SG 324	80	34.0	48	19.0	10	-	-	24.00	-	8.00	27.3
SG 3002G	80	38.0	55	25.0	-	38	11.0	24.80	1:5	5.00	27.5
SG 325	80	40.0	55	27.0	10	-	-	25.00	-	8.00	28.3
SG 303.5	80	40.0	55	25.0	-	38	5.0	25.50	1:8	5.00	28.2
56 308.1	80	40.0	55	28.5	10	-	-	25.40	-	4.76	28.4
SG 308.2	80	40.0	55	28.5	10	-	-	25.40	-	6.35	29.1
SG 303.5D	80	32.0	48	17.0	-	-	-	26.80	1:8	4.76	29.0
SG 330	80	50.0	66	25.0	10	-	-	30.00	-	8.00	33.3
SG 310.2	80	50.0	66	43.0	10	-	-	31.75	-	6.35	34.7
SG 310.3	80	50.0	66	43.0	10	-	-	31./5	-	/.93	35.3
SG 332	80	50.0	66	43.0	10	-	-	32.00	-	10.00	35.3
SG 304	80	50.0	66	43.0	-	-	6.0	33.00	1:8	7.00	36.0
SG 304P	80	50.0	66	43.0	-	-	6.0	33.00	1:8	6.35	35.5
SG 311.3	80	50.0	66	43.0	-	-	-	34.92	-	7.94	39.2
SG 312.5	80	60.0	70	53.0	-	-	-	38.10	-	9.52	42.6
SG 315	80	25.0	42	10.0	-	-	-	15.00	-	5.00	17.3
SG 328	80	52.0	66	40.0	-	-	-	28.00	-	8.00	31.3
SG 338	80	77.0	70	67.0	-	-	-	38.00	-	10.00	41.3
SG 342	80	79.0	75	71.0	-	-	-	42.00	-	12.00	45.3
SG 348	80	95.0	80	95.0	-	-	-	48.00	-	14.00	51.8

Max. Torque = 190 NM

Pump Drive Components

G Series Coupling

jbj

		•L			+_L-+ + +						
	-a				F	- d					
			τ-•	s							
		11.5						Drive	Spider Detai	ls	
		- ch		T			D.(Dimensio	ons (mm)	
		12 h-					Ref.	D	Rl	JT	Е
		41		Ϋ́□	< h		R400	105	52 2	1 3.5	28
	-	Ø			7		(1997)				
Туре					Hub	Dimensions	(mm)	~	-		
SC 440	D 105	L 24	d	1	\$ 40	У	е	10 00	Taper	cn c.oo	h
SG 419	105	34	62	23	12	-	-	20.00	-	6.00	21.8
SG 420	105	34	63	17	12	-	-	22.00		6.00	22.0
SG 403	105	32	63	13	12	_	7	21.70	1:8	4.00	23.4
SG 407.1	105	34	63	15	12	-	-	22.22	-	4.76	25.0
SG 407.2	105	34	63	15	12	-	-	22.22	_	6.35	25.8
SG 424F	105	40	63	18	-	-	-	24.00	-	6.00	26.5
SG 424	105	40	63	22	12	-	-	24.00	-	8.00	27.3
SG 400ZG	105	34	63	19	-	38	7	24.80	1:5	5.00	27.7
SG 425	105	40	63	15	-	-	-	25.00	-	8.00	28.3
SG 403.5	105	34	63	19	-	40	1	25.50	1:8	5.00	27.7
SG 408.1	105	40	70	36	-	-	-	25.40	-	4.76	28.4
SG 408.2	105	40	70	36	-	-	-	25.40	-	6.35	29.1
SG 403.5D	105	34	61	21	-	38	-	26.80	1:8	4.76	28.4
SG 428	105	40	63	25	-	-	-	28.00	-	8.00	31.3
SG 430	105	50	70	35	-	-	-	30.00	-	10.00	33.3
SG 410.2	105	52	70	37	-	-	-	31.75	-	6.35	35.2
SG 410.3	105	52	70	37	-	-	-	31.75	-	7.93	35.8
SG 432	105	50	70	35	12	-	-	32.00	-	10.00	35.3
SG 404P	105	40	70	31	-	45	2	33.10	1:8	7.00	25.0
SG 404	105	60	70	45	-	45	2	44.45	1.0	11 11	50.0
SG 445	105	80	78	50		_	_	45.00		14.00	49.0
SG 435	105	50	70	35	12	-		35.00	_	10.00	38.3
SG 412.5	105	52	70	36	_	_	_	38,10	_	9.52	42.6
SG 406.1	105	34	63	15	12	-	_	19.05	-	4.76	21.6
SG 440	105	60	78	45	-	-	-	40.00	-	12.00	43.3
SG 450	105	70	84	55	-	-	-	50.00	-	14.00	53.8
SG 411.3	105	52	70	36	-	-	-	34.92	-	7.94	39.2
SG 438	105	77	76	61	-	-	-	38.00	-	10.00	41.3
SG 442	105	91	76	75	-	-	-	42.00	-	12.00	45.3
SG 448	105	91	84	75		-	-	48.00		14.00	51.8
SG 455	105	109	105	109	-	-	-	55.00		16.00	59.3
SG 460	105	109	105	109	-	-	-	60.00	-	18.00	64.6

Material : Light Alloy

Max. Torque = 310 NM

Pump Drive Components

Introduction to the Spidex® NBL Coupling

jbj

The NBL series curved jaw coupling offers zero backlash capability in a 3-piece design. The coupling is provided assembled under preload. The NBL series can be used in a variety of different applications requiring precision and accuracy.

The NBL series spider features a straight centre of the spider tooth, providing higher stiffness due to coupling preload. The crowning of the ends of the spider legs allows for misalignment, while the curved jaws and solid spider centre provide high-speed capability.

The jaws of the hubs and the spider legs are chamfered to provide easy assembley. The NBL coupling design also allows the blind assembly in tight spaces. Raised spider dots on the legs of the spider ensure proper spacing of the hubs and spider.

Proper installation of the coupling can provide isolation of electrical currents. Check the 's' dimension listed on page 24 to ensure the proper spacing between spiders between spiders and hubs.

The NBL coupling has spiders available in four different shore hardnesses. Each spider offers benefits for different vibratory, environmental and torque transmission requirements.

Elastomer Performance Data for NBL Series

Spider Type	Colour	Material	Normal	Maximum	Size	Typical Application
80 Shore	Blue	Urethane	-50° to 80°C	-80° to 120°C	14 - 19	Electric measuring equipment
92 Shore	Yellow	Urethane	-40° to 90°C	-50° to 120°C	14 -55	Electric measuring control systems
95/98 Shore A	Red	Urethan e	-30° to 90°C	-40° to 120°C	14 - 55	Positioning drives, main spindle drives, high load applications
64 Shore	Green	Urethane	-20° to 110°C	-30° to 120°C	14 - 55	High load applications requiring torsionally stiff spider material

Coupling Selection for the NBL Series

Typical Applications

Measurement and Control Systems

The torsional stiffness of the NBL series coupling provides the needed accuracy for measurement and control systems. The low torques of these applications gives the NBL series the ability to provide zero backlash due to the elastomer preload.

Servo and Positioning Drives

The NBL coupling provides a zero backlash, flexible connection for servo and positioning drives. An added benefit of the NBL series is its damping capabilities. For applications that have vibrations at critical speeds, the NBL coupling can provide a zero backlash solution for vibration problems.

Pump Drive Components

Main Spindle Drives

ľ

The NBL coupling is used in main spindle drives for machine tools. Torque spikes and cyclical loading are handled by the NBL series by damping or by shifting the vibratory frequency range to a non-critical speed range.

NBL Series Service Factors

Temperature Factor K3

	-30° to 30°C	40°C	60°	80°C
КЗ	1	1.2	1.4	1.8

Torsional Stiffness Factor K4

	Main Spindle Drive of Machine	Positioning Drive	Shaft Encoders, Angle Encoders
К4	2-5	3-8	10

Calculation Formula

Rated nominal torque Tn (Nm) = $9550 \times P(kW)$

rpm(1/min)

Rotational inertia coefficient (driver) =

Moment of inertia (driver) Moment of inertia (driver) + Moment of inertia (driven)

Rotational inertia coefficient (driven) =

Moment of inertia (driven) Moment of inertia (driver) + Moment of inertia (driven)

Check the nominal torque for the application against the rating for the coupling:

Tkn > Rated torque of machine x K3 x K4

Peak Torque

Shock load (driver side) = Peak torque (driver) x rotational inertia coefficient (driver) x K5

Shock load (driven side) = Peak torque (driven) x rotational inertia coefficient (driven) x K5

Check the peak torque for the application against the rating for the coupling checking both driver and driven sides:

Tkmax > Peak Torque (driver or driven side) x K3 x K4

NBL	Spider	Max Clan	ximum Speed nping Styles	d for (rpm)	Torqu	e (Nm)	m) Static Torsional Stiffness	Dynamic Torsional	Radial	Weigl	ht (kg)	Moment of Inertia J (kgm2)	
Size	Туре	Clamping Hub	Set Screw Hub	Locking Device Hub	T _{kn}	T _{kmax}	Stiffness (Nm/rad)	Stiffness (Nm/rad)	N/mm	Hub (x10 ⁻³)	Spider (x10 ⁻³)	Hub (x10-6)	Spider (x10 ⁻⁶)
	80				4.0	8.0	60.2	180	153				
14	92	12700	15000	25400	7.5	15.0	114.6	344	336	20	16	20	0.457
14	98	12700	15900	25400	12.5	25.0	171.9	513	654	20	4.0	2.0	0.457
	64				16.0	32.0	234.2	702	856				
	80				4.9	9.8	343.8	1030	582				
10	92	0550	11000	10000	10.0	20.0	573.0	1720	1120	66	7.0	20.4	1 40
15	98	9000	11900	19000	17.0	34.0	859.5	2580	2010	00	7.0	20.4	1.49
	64				21.0	42.0	1240.3	3720	2930				
	92				35.0	70.0	1432.0	4296	1480				
24	98	6950	8850	13800	60.0	120.0	2063.0	6189	2560	132	18.0	50.8	7.5
	64				75.0	150.0	2978.0	8934	3696				
	92				95.0	190.0	2292.0	6876	1780				
28	98	5850	7350	11700	160.0	320.0	3438.0	10314	3200	253	29.0	200.3	16.5
	64				200.0	400.0	4350.0	13050	4348				
	92				190.0	380.0	4584.0	13752	2350				
38	98	4750	5950	9550	325.0	650.0	7160.0	21486	4400	455	49.0	400.6	44.6
	64				405.0	810.0	10540.0	31620	6474				
	92				265.0	530.0	6300.0	14400	2430				
42	98	4000	5000	8050	450.0	900.0	19200.0	48000	5570	1850	79.0	2246.0	100.0
	64				560.0	1120.0	27580.0	68950	7270				
	92				310.0	620.0	7850.0	18055	2580				
48	98	3600	4550	7200	525.0	1050.0	22370.0	55925	5930	2520	98.0	3786.0	200.0
	64				655.0	1310.0	36200.0	90500	8274				
	92				410.0	820.0	9500.0	21850	2980				300.0
55	98	3150	3950	6350 6	685.0	1370.0	23800.0	59500	6686	3800	115.0	7496.0	
	64	3150			825.0	1650.0	41460.0	103650	9248	1			

Shock Load Factors K5

	K5
Light shock loads	1.0
Medium shock loads	1.4
Heavy shock loads	1.8

Spidex® NBL Coupling

Pump Drive Components

		Bores		Dimensions (mm)												
Spidex [®]	Pre	Finish	Bores	•		14812	F		h	ماله	~	4	Waight Ka	Moment of		
NDL	Bore	Min.	Max.		L .	LIQLZ	-	a	u u	an	g	•	weight Kg	Kg/m ²		
14/16 Al	-	4	16	30	35	11	13	1.5	10	10.5	M 4	5	0.060	0.06		
19/24 Al	-	6	24	40	66	25	16	2.0	12	18.0	M 5	10	0.130	0.37		
24/32 AI	-	8	32	55	78	30	18	2.0	14	27.0	M 5	10	0.280	1.35		
28/38 AI	-	10	38	65	90	35	20	2.5	15	30.0	M 8	15	0.460	3.10		
38/45 Al	-	12	45	80	114	45	24	3.0	18	38.0	M 8	15	0.900	9.00		
42/55 St	-	14	55	95	126	50	26	3.0	20	46.0	M 8	20	3.600	41.10		
48/60 St	-	15	60	105	140	56	28	3.5	21	51.0	M 8	20	4.800	82.50		
55/70 St	-	20	70	120	160	65	30	4.0	22	60	M 10	20	7.400	170.00		

	NBL	Series Hub designs	
Keyway with Set Screw (KW) Standard method of securing a hub to a shaft. Clamping style recommended for backlash free torque transmission		Without Keyway with Set Screw (W/SS) Set screw used to secure hub to shaft. This hub design should be used in applications with non reversing and low torque characteristics.	
Clamping Hub with Single Slot without Keyway (C) Zero backlash, clamping style for torque transmission. Torque capacity of hub depends on bore size. Available standard for sizes 14 - 19	HA O	Clamping Hub with Single Slot with Keyway (CWK) Zero backlash, clamping style with keyway for torque transmission. Usable in applications featuring reversing loads. Available standard for sizes 14 - 19	
Clamping Hub with Double Slot without Keyway (DSC) Transmits torque utilizing a double split clamp to attach hub to shaft. Zero or minimum backlash. Torque capacity of coupling determined by bore size. Available standard for sizes NBL 25 - 55	H	Clamping Hub with Double Slot with Keyway (DSCK) Transmits torque utilizing a double split clamp to attach hub to shaft. Zero or minimum backlash. Available standard for sizes NBL 24 - 55	THE STREET

The NBL coupling features different hub designs for different applications. Each type offers specific benefits for different types of application. The clamping styles offer the benefit of minimal to zero backlash.

www.jbj.co.uk

Misalignment

jbi

The NBL coupling handles the axial, angular and radial misalignment whilst retaining it's zero backlash properties due to its spider design.

Refer to table on next page.

Size	Spider Shore	Axial ∆Ka (mm)	Radial ∆Kr (mm)	Angular ∆KW (deg.)		
	80		0.21	1.1		
14	92	+1.0	0.15	1.0		
14	98	-0.5	0.09	0.9		
	64		0.06	0.8		
	80		0.15	1.1		
10	92	+1.2	0.10	1.0		
19	98	-0.5	0.06	0.9		
	64		0.04	0.8		
	92		0.14	1.0		
24	98	+1.4	0.10	0.9		
	64	0.0	0.07	0.8		
	92		0.15	1.0		
28	98	+1.5	0.11	0.9		
	64	0.1	0.08	0.8		
	92	.10	0.17	1.0		
38	98	+1.8	0.12	0.9		
	64		0.09	0.8		
	92		0.19	1.0		
42	98	+2.0	0.14	0.9		
	64	1.0	0.10	0.8		
	92		0.23	1.0		
48	98	+2.1	0.16	0.9		
	64		0.11	0.8		
	92		0.24	1.0		
55	98	+2.2	0.17	0.9		
	64		0.12	0.8		

Pump Drive Components

Jh

Introduction to the Dentex[®] Coupling

The Dentex[®] coupling is a flexible gear coupling whose typical features are two congruent hubs with crowned teeth which transmit torque by meshing with the internal toothing of a housing component. The coupling sleeve with axially parallel involute gearing is centred at the tooth flanks of the coupling hubs.

The coupling design meets the requirement to compensate radial, angular, and axial shaft displacements in order to release the neighbouring shaft bearings from non-controlled additional bearing loads. Even with the maximum permissible displacement edge contact of the teeth is excluded and there will be no periodic variation of the angular velocity. The high internal cushioning properties of the plastic material used for the coupling sleeve reduce the effect of shock loading.

Dentex[®] couplings are as suitable for horizontal shaft connection as they are for vertical connection, for reversing and intermittent service, and they have electrical insulating properties, a low weight, a low flywheel effect and, owing to their compactness, only little space is required for them. The steel/plastic combination also has the advantage that no lubrication by oil or grease is required;

The steel/plastic combination also has the advantage that no lubrication by oil or grease is required; the coupling therefore does not need any maintenance.

The 6,6-polyamide used for the coupling sleeve excells due to its excellent sliding and wear resistance properties especially with the combination of toughness, hardness and rigidity; it is also resistant to condensation and splash water, engine fuels, oils, greases, alcohols, esters, ketones, aliphatic and aromatic hydrocarbons and many other agents. However, substances of strongly polar character such as concentrated mineral acids, formic acid, cresol, glycol, benzyl alcohol can dissolve 6,6-polyamide at high temperature.

Maximum service reliability is guaranteed at temperatures in the range from -25°C to +80°C. It is necessary to use a coupling sleeve in heat stabilised polyamide for temperature up to 140°C.

Technical Detail

		Maximum	Torqu	ie NM	Power	kw/RPM	Maximum Misalignment					
	Туре	Speed RPM	Speed RPM Normal Maximum Normal Maximum T _{KN} T _K T Normal Maximum		Maximum	Axial (mm)	Radial (mm)	Angular (per hub)				
	В - 14	8000	10	20	0.0010	0.0021		+/- 0.3				
	B - 19	8000	16	32	32 0.0017 0.00							
	В - 24	8000	20	40	0.0021 0.0042							
	B - 28	8000	45	90	0.0047	0.0094						
	B - 32 7000 B - 38 6000		60	120	0.0063	0.0130						
			6000 80		0.0084	0.0170		+/- 0.4				
	B - 42	5400	100	200	0.0100	0.0200						
	B - 48	5000	140	280	0.0150	0.0290						
	B - 55	4000	250	500	0.0260	0.0520						
	B - 65	3800	390	780	0.0410	0.0800	+/- 1	+/- 0.6	+/- 1deg.			
	B - 80	3000	700	1400	0.0730	0.1500		+/- 0.7				
	B - 100	2400	1250	2400	0.0130	0.2500		+/- 0.8				
	24	10200	20	40	0.0020	0.0040						
B3R	28	8300	45	90	0.0045	0.0095		+/ 0.4				
	32	7000	80	160	0.0084	0.0170		+/- 0.4				
	45	5000	140	280	0.0150	0.0290						
B3R	65	3800	390	780	0.0410	0.0800		+/- 0.6				
B4R	R 80 3000		700	1400	0.0730	0.1500		+/- 0.7				
	100	2400	1250	2400	0.1300	0.2500		+/- 0.8				

Pump Drive Components

Dentex[®] Couplings for IEC Standard Motors

jbj "HR																		
Motor	Sh D x I	iaft (mm)	n = (1/n Pow	750 nin) er P	Dentex	T _K max	n = (1/i Pov	1000 min) ver P	Dentex	T _K max	n = (1/ Pov	1500 min) ver P	Dentex	T _K max	n = : (1/n Pow	3000 nin) rer P	Dentex	T _K max
Size	1500 1/min	3000 1/min	kW	T _{AN} (Nm)	туре	(NM)	kW	T _{AN} (Nm)	туре	(NM)	kW	T _{AN} (Nm)	туре	(Nm)	kW	T _{AN} (Nm)	туре	(Nm)
	0.00			. ,			-				0.06	0.40			0.09	0.30		
50	9 x 20										0.09	0.60			0.12	0.40		
63	11 x 23				14	20	_	—	1/	20	0.12	0.90	14	20	0.18	0.60	14	20
	11 × 25				14	20			14	20	0.18	1.20	14	20	0.25	0.90	14	20
71	14 x 30						_				0.25	1.80	-		0.37	1.30		
											0.37	2.50			0.55	1.90		
80	19 x 40				19	32	0.37	3.70	19	32	0.55	3.70	19	32	0.75	2.50	19	32
							0.55	5.50			0.75	5.00			1.10	3.70		
90 S	24 x 50				24	40	0.75	7.90	24	40	1.10	7.500	24	40	1.50	4.90	24	40
90 L							1.10	11.00			1.50	10.00			2.20	7.40		
100 L			0.75	11			1.50	15.00			2.20	15.00			3.00	9.80		
	28 x 60		1.10	16	28	90			28	90	3.00	20.00	28	90	4.00	13.00	28	90
112 M			1.50	21			2.20	22.00			4.00	27.00			4.00	13.00		
132 S			2.20	29			3.00	30.00			5.50	36.00			5.50	18.00		
	38 x 80				38	160	4.00	30.00	38	160			38	160	7.50	25.00	38	160
132 M			3.00	40			5.50	55.00			7.50	49.00			_	—		
			4.00	54											11.00	35.00		
160M	42 x 110		5.50	74	42	200	7.50	74.00	42	200	11.00	72.00	42	200	15.00	49.00	42	200
160 L	1		7.50	100			11.00	108.00			15.00	98.00	-		18.50	60.00		
180 M	40 440		_	_	10		_	—	40		18.50	121.00	10		22.00	72.00	40	
180 L	- 48 x 110		11.00	147	48	280	15.00	147.00	48	280	22.00	144.00	48	280		_	48	280
200.1	55 110		15.00	100		500	18.50	185.00		500	20.00	105.00		500	30.00	97.00		
200 L	55 X 110		15.00	196	55	500	22.00	215.00	55	500	30.00	195.00	55	500	37.00	117.00	66	500
225 S	60 × 140	EE v 110	18.50	245			_	_			37.00	245.00			—	—	55	500
225 M	00 x 140	55 X 110	22.00	294	65	780	30.00	292.00	65	780	45.00	294.00	65	780	45.00	146.00		
250 M	65 x 140	60 x 140	30.00	390			37.00	361.00			55.00	357.00			55.00	176.00		
280 S	75 x 140	65 x 140	37.00	490			45.00	440.0			75.00	487.00			75.00	245.0		
280 M	75 x 140		45.00	585	80	1400	55.00	536.00	80	1400	90.00	584.00	80	1400	90.00	294.00	65	780
315 S			55.00	715			75.00	730.00			110.00	714.00			110.00	350.00	00	
315 M	80 x 170		75.00	970			90.00	876.00			132.00	857.00			132.00	420.00		
3151			90.00	1170	100	2400	110.00	1070.00	100	2400	160.00	1030.00	100	2400	160.00	513.00	80	1400
			110.00	1420			132.00	1280.00			200.00	1290.00			200.00	641.00	00	1400

Lov

Pump Drive Components

Standard Dentex® Coupling B

 H^{\star} is the minimum dimension required for the disengaging of the coupling.

Finish bores according to ISO-standard H7, keyway according to DIN 6885, sheet 1 (JS9).

Weight and moment of inertia values refer to maximum diameter d without keyway.

	Bores				Dimensions (mm)										With d max. but without key	
Туре	Pre	Finish	Bores	Δ	в	L	L1 +	Е	Н*	с	F	a	f	Extended	Weight ka	Moment of
	Bore	Min.	Max.		_	-	L2					5	•	nub lengui		Inertia kg/m2
B - 14	—	6	14	40	25	50	23	4	15	6.5	37	M5	6	40	0.175	0.000030
B - 19	_	8	19	48	30	54	25	4	17	7.0	37	M5	6	-	0.320	0.000047
B - 24	—	10	24	52	36	56	26	4	17	7.5	41	M5	6	50	0.316	0.000093
B - 28	7	10	28	66	44	84	40	4	20	19.0	46	M8	10	55	0.739	0.000310
B - 32	12	12	32	76	50	84	40	4	20	18.0	48	M8	10	55	0.950	0.000550
B - 38	12	14	38	83	58	84	40	4	20	18.0	48	M8	10	60	1.220	0.000870
B - 42	12	20	42	92	68	88	42	4	22	19.0	50	M8	10	60	1.490	0.001400
B - 48	12	20	48	100	68	104	50	4	22	27.0	50	M8	10	60	1.810	0.001800
B - 55	15	25	55	125	83	124	60	4	30	30.0	65	M10	20	_	3.450	0.004600
B - 65	15	25	65	140	96	144	70	4	32	36.0	72	M10	20	_	5.180	0.009900
B - 80	20	30	80	175	124	186	90	6	45	46.5	93	M10	20	_	11.500	0.037000
B - 100	35	40	100	210	152	228	110	8	55	63.0	102	M12	30	_	20.500	0.115600

Assembly Instructions

On assembly it is important that the hubs are correctly fitted on the shafts and that the dimension E is maintained. The dimension E can be controlled by the total assembley length L.

An incorrect dimension E has a negative influence on the performance of the coupling. Check the coupling sleeve has minimal axial movement before machine operation.

The permissible displacement values depend on rotation and transmitted power.

Pump Drive Components

Standard Dentex® Coupling B4R and B3R

jbj

B4R with dust seal and circlips

n-Hi	T	HA -	-
-	-	t	8 9

H* is the minimum dimension required for the disengaging of the coupling. Finish bores according to ISO-standard H7, keyway according to DIN 6885, sheet 1 (JS9). Weight and moment of inertia values refer to maximum diameter d without keyway.

	Bores						With d max. but without key									
Туре	Pre	Finish Bores		۸	Р		L1	E	LI*	6	F		£	Waight ka	Moment of	
	Bore	Min.	Max.			-	L2	-		C	F	y	•	weight kg	Inertia kg/m2	
B4R 32	12	12	32	84	50	84	40	4	18.0	13.0	58	M8	10	1.1	0.0007	
B4R 45	12	20	42	100	65	88	42	4	18.0	14.0	60	M8	10	1.5	0.0017	
B4R 65	15	25	65	140	96	144	70	4	15.0	30.0	84	M10	20	5.4	0.0118	
B4R 80	20	30	80	175	124	186	90	6	3.5	46.5	93	M10	20	11.7	0.0385	
B4R 100	35	40	100	210	152	228	110	8	—	63.0	102	M12	30	20.8	0.0987	

B3R with inner and outer circlips

H* is the minimum dimension required for the disengaging of the coupling. Finish bores according to ISO-standard H7, keyway according to DIN 6885, sheet 1 (JS9).

Weight and moment of inertia values refer to maximum diameter d without keyway.

	Bores				Dimensions (mm)										With d max. but without key	
Туре	Pre	re Finish Bores		•	Р		L1	E	U *	6	E	~		Waight kg	Moment of	
	Bore Min. Ma		Max.	~	Б		L2	L2				g	'	weight kg	Inertia kg/m2	
B3R 24	_	10	24	58	36	56	26	4	23.5	2.5	51	M5	6	0.3	0.0001	
B3R 28	_	10	28	70	44	84	40	4	26.0	14.0	56	M8	10	0.8	0.0004	
B3R 32	12	12	32	84	50	84	40	4	27.0	13.0	58	M8	10	1.1	0.0007	
B3R 45	12	20	42	100	65	88	42	4	28.0	14.0	60	M8	10	1.5	0.0016	
B3R 65	15	25	65	140	96	144	70	4	40.0	30.0	84	M10	20	5.4	0.0115	
B3R 80	20	30	80	175	124	186	90	6	45.0	46.5	93	M10	20	11.6	0.0378	
B3R 100	35	40	100	210	152	228	110	8	49.0	63.0	102	M12	30	20.7	0.0974	

Pump Drive Components

Ībi

ATOS, Casappa, Dowty, Garbe, Lahmeyer, Jotti & Strozzi, Marzocchi,

Plessey, Salami, Turolla etc.

Codo		Dimensi	ons (mm)	
Code	d	b + 0.05	t2	L
N/1	9.750	2.40	1.3	17.0
N/1c	11.600	3.00	2.0	16.5
N/1e	13.000	2.40	1.6	21.0
N/1d	14.000	3.00	2.2	17.5
N/1b	14.300	3.20	2.2	19.5
N/2	17.287	3.20	1.6	24.0
N/2a	17.287	4.00	2.1	24.0
N/3	22.002	3.99	2.1	28.0
N/4	25.463	4.78	3.4	36.0
N/4b	25.463	5.00	3.9	36.0
N/4a	27.000	4.78	3.0	32.5
N/4g	28.450	6.00	2.1	38.5
N/5	33.176	6.38	3.4	44.0
N/5a	33.176	7.00	3.4	44.0
N/6	43.057	7.95	3.4	51.0
N/6a	41.150	8.00	3.1	42.5

In front of theN put the relevant size of the coupling, and short description of the pump.

Taper 1:5

Bosch, Bucher, Kracht, Leduc, Dusterloh etc.

Codo		Dimensi	ons (mm)	
Code	d + 0.05	b (j9)	t2	L
A10	9.85	2	1.0	11.5
As12	11.85	3	1.8	16.5
B17	16.85	3	1.8	18.5
C20	19.85	4	2.2	21.5
Cs22	21.95	3	1.8	21.5
D25	24.85	5	2.9	26.5
E30	29.85	6	2.6	31.5
F35	34.85	6	2.6	36.5
G40	39.85	6	2.6	41.5

Taper 1:10

Parker Hannifin NMF, ATE - Teves etc.

Taper1:8

Taper 1:10

L

Taper 1:10

σ

τ

Codo	Dimensions (mm)										
Code	d + 0.05	b (j9)	d/2 + t2	L							
PC 20	19.95	5	12.1	32							
PD 25	24.95	6	14.1	45							
PE 30	29.75	8	17.0	50							

Fitting instructions are available from the named firms.

Also to suit:

Commercial, Danfoss, Denison, Dowty, Racine Rex, Rexroth, Schwelm, Towler, Vickers, Vickers-Reichert, Dusterloh, Langen, & Co. etc.

Parallel Shafts

30

Codo		Dimensi	ons (mm)
Code	d H7	b	(d+t2) + 0.05
4.0	12.70	3.18	14.07
5.0.1	15.87	4.76	19.00
6.1	19.05	4.76	21.60
7.1	22.23	4.76	24.60
7.2	22.23	6.35	25.07
8.1	25.40	4.76	27.68
8.2	25.40	6.35	28.09
9.2	28.58	6.35	31.32
10.2	31.75	6.35	34.60
10.3	31.75	7.94	35.21
11.3	34.93	7.94	38.60
11.5	34.93	9.53	41.00
12.5	38.10	9.53	42.27
13.5	41.28	9.53	45.47
14.4	44.45	11.11	49.30
14.5	44.45	9.53	49.50
15.8	47.68	12.70	53.11

Details on request for: Abex-Denison - SAE 16/32 pitch, Bosch - DIN

5482, Bruninghaus - DIN 5480, Hydromatik - DIN 5480, LindeGuldner -

DIN 5482, SauerGetriebe - SAE 16/32 pitch, ZF Sundstrand - SAE 16/32 pitch.

Lovejoy

Dentex Special Bores

Pump Drive Components

Standard Dentex[®] FL Coupling

DENTEX® FL couplings are torsionally stiff crowned tooth flange couplings made from a combination of steel and plastic for diesel engine drives.

The driving flange is made from glass-fibre reinforced polyamide for high mechanical rigidity and heat resistance. The coupling hub with external crowned teeth is made from steel.

The Dentex[®] FL coupling allows a keyed connection between diesel engine and hydraulic pump, the pump centred over the SAE housing.

The application of the Dentex $^{\otimes}$ FL coupling results in a non-critical service due to the coupling stiffness. The hazard of a rotating oscillation during the drive will be avoided.

If it is not possible to secure the hub by means of end-disc and screw in the case of pump shafts with profiled gear teeth (according to DIN 5480, 5482, SAE), the use of a clamping hub connection should be considered. The radial distortion guarantees a fit on the pump shaft which is free from clearance.

	'FL' Technical Data - Weights - Inertia - Torsional Stiffness											
	Tor	que	Bower T	Weight	With Hub			SAE	Size			Dynamic Torsional Stiffness
Hub Size	Τ _{κΝ}	T _{Kmax} .	PowerI _{kw}	Inertia	Max. Bore	6.5"	7.5''	8''	10"	11.5"	14"	NM/RAD
				ka	0.6750	0.4000	0 5 2 0 0	0.5000	0.7500			0.30Tkn = 35 x 10 ³
42	240	480	120	ĸġ	0.6750	0.4000	0.5200	0.5000	0.7500	-	-	0.50Tkn = 75 x 10 ³
42	240	400	120	kam2	0.0006	0.0025	0.0045	0.004.8	0.0100	_	_	0.75Tkn = 105 x 10 ³
				kyinz	0.0000	0.0023	0.0043	0.0040	0.0100			1.00Tkn = 125 x 10 ³
				ka	0 7900	0.3200	0.4300	0.5100	0.6400	_	_	0.30Tkn = 35 x 10 ³
48	240	480	120	kg	0.7500	0.5200	0.4000	0.5100	0.0400			0.50Tkn = 75 x 10 ³
40	240	400	120	kam2	0.0007	0.0021	0.0035	0.0049	0.0085	_	_	0.75Tkn = 105 x 10 ³
				Ngiliz	0.0007	0.0021	0.0000	0.0040	0.0000			1.00Tkn = 125 x 10 ³
				ka	2 1900	_	_	_	0.6400	0 890	_	0.30Tkn = 110 x 10 ³
65	650	1600	325	Ng	2.1000				0.0400	0.000		0.50Tkn = 160 x 10 ³
	000	1000	020	kam2	0.0039	_	_	_	0.0065	0.012	_	0.75Tkn = 200 x 10 ³
				- Agrinz	0.0000				0.0000	0.012		1.00Tkn = 230 x 10 ³
				ka	5 2000	_	_	-	_	1 120	_	0.30Tkn = 200 x 10 ³
80	1200	3000	60.0	i s	0.2000					1.120		0.50Tkn = 410 x 10 ³
	1200	0000	000	kam2	0.0151	_	_	_	_	0.022	_	0.75Tkn = 580 x 10 ³
				Ngiliz	0.0101					0.022		1.00Tkn = 700 x 10 ³
				ka	5 2000	_	_	_	_	_	7 350	0.30Tkn = 200 x 10 ³
80	1200	3000	60.0	i s	0.2000						1.000	0.50Tkn = 410 x 10 ³
				kam2	0.0151	_	_	_	_ _	_ _	0 187	0.75Tkn = 580 x 10 ³
				Ng112	0.0101						0.107	1.00Tkn = 700 x 10 ³

8

Metric Flange Details

Pump Drive Components

jbj

Lovejoy L5 Steel Nylon D1 (z=Number) D1 (z=Number) 0 20 0 20 m 0 L1 L1 ×. * 12 L3 L3 Flange Dimensions (SAE J620) Туре Size D D1 d Z No. FL6 6½" 215.90 200.02 9 6 FL7 7½" 241.30 222.25 9 8 8" 11 6 FL8 263.52 244.47 10" FL10 314.32 295.27 11 8 FL11.5 111/2" 11 8 352.42 333.37

Hub Pilot		Machined bore		Dimensions								SAE size					Max. Axial displacement
coupling bore	Min.	Max.	В	D2	L1	L2	L3	L4	L5	6.5"	7.5"	8"	10"	11.5"	14''	(mm)	
42	15	20	42	65	100	42 to 60	33	42	20	13	х	х	Х	Х			+/- 0.2
48	15	20	48	68	100	50 to 60	41	50	20	13	х	х	Х	Х			+/- 0.2
65	-	25	65	96	132	70	60	70	27	21				Х			+/- 0.2
65		25	65	96	172	70	60	70	31	22					х		+/- 0.2
80		30	80	124	172	90	78	87	30	21					Х	х	+/- 0.2

466.72

14

438.15

		Metric Flange Dimensions	;	
Туре	Circular bore Ø D1 mm	Outer Ø D mm	Clamping bore hole Ø mm	Number z
FL96	50	96	4 x 8	70
FL125	100	125	3 x 8	80
FL135	100	135	3 x 8	135
FL150	130	150	5 x 8	106
FL152	122	152	3 x 12	105
FL155	125	155	3 x 12	155
FL210	185	210	3 x 10	125
FL220	165	220	6 x 10	220
FL220	185	220	3 x 12	125

Alternative flange dimensions available on request.

FL14

14"

www.jbj.co.uk

FL Couplings

Minimum Space - The entire length is normally mounted inside the housing face requiring only a flat pump mounting adaptor. The reduced space may result in savings within the equipment frame manufacture or hydraulic costs.

Free Axial Travel - Crowned teeth slide freely in the nylon spline with a +/- 2mm axial travel. Any shaft float is absorbed within the coupling and is not transmitted to the pump components.

Blind Assembly - Pump hub gear ring fits through the pilot hole of the pump mounting plate resulting in faster assembly at lower cost, therefore requiring no inspection ports or cut outs.

Crowned Gear Teeth - Provides for angular misalignment, preventing angular force on the pump shaft bearings and seals.

Heat Stable - Fibreglass reinforced nylon designed to operate in diesel engine ambients without air circulation. Dimensionally stable to 120°C.

	Model	Dentex Hub - Type	Engine / Type
	FL6	B 42/48	Ford, Hatz, KHD, Kubota, Lister Petter, Lombardini, Perkins, Ruggerini, Slanzi, Teledyne.
SAE	FL7 FL8	B 42/48 B 42/48	Ford, Isuzil, Kubota, Lombardini, Mitsubishi, Yanmar, Cummins, Ford, Hatz, Isuzu, KHD, Lister Petter, Lombardini, Mitsubishi, Perkins, Peugeot, Slanzi, Teledyne, Toyota
	FL10	B 42/48	Cummins, Hatz, Isuzu, KHD, Kubuta, Lombardini, Lister Petter, Mitsubishi, Perkins, Slanzi, Toyota
	FL10	B 65	Caterpillar, Cummins, Detroit Diesel, Daimler-Benz, Ford, Hercules, Isuzu, John Deere, KHD, Lister Petter, Perkins, Slanzi
	FL96	B 42/48	Hatz Z 788/789/790
METRIC	FL125	B 42/48	Lombardini 9LD 560-2, KHD FIL 208 D, 210 D, F2L511, F2L912
METRIC	FL135	B 42/48	Kubota D 650, 750, 850, 950, 140, Kubota V 1100, 1200, 1102, 1302
	FL150 FL152	B 42/48 B 42/48	Kubota Z 400, 430, D 600, Hatz E 513, 673, 780, 786, E71, 75, 79

- Available in all hub sizes with parallel bores and metric or SAE splines
- Maximum holding power without damage to pump spline. Easy removal
- Hub length machined to meet minimum assembly requirements and available space.
- Sintered steel hubs for excellent corrosion protection.
- Simple, inexpensive, positive clamping.
- · Requires drilled and tapped pump shaft.
- Available for SAE, metric or special splines and straight shafts with keyway.

Pump Drive Components

jbj

Splined Bushes

_		_		Specific	ations	
Туре	A	В	C	SAE/MOD	DIN	Number of Teeth
SAE 9T16/32	42	25	16/32DP	1.587	-	9
SAE 11T16/32	42	25	16/32DP	1.587	-	11
SAE 13T8/16	62	66	8/16DP	3.175	-	13
SAE 13T16/32	42	30	16/32DP	1.587	-	13
SAE 14T12/24 x 42	48	42	12/24DP	2.116	-	14
SAE 14T12/24 x 48	48	48	12/24DP	2.116	-	14
SAE 15T16/32	48	25	16/32DP	1.587	-	15
SAE 15T8/16	83	66	8/16DP	3.175	-	15
SAE 17T12/24	62	50	12/24DP	2.116	-	17
SAE 21T16/32	48	48	16/32DP	1.587	-	21
SAE 23T16/32	53	48	16/32DP	1.587	-	23
SAE 27T16/32	62	66	16/32DP	1.587	-	27
SAE 40T16/32	83	66	16/32DP	1.587	-	40
DIN B8-5462	55	40	B8 x 32 x 35	-	5462	8
DIN W25 x 1.25 x 18	48	44	W25 x 1.25 x 9G	-	5480	18
DIN W30 x 2 x 14	55	45	W30 x 2x 9G	-	5480	14
DIN W35 x 2 x 16	60	49	W35 x 2 x 9G	-	5480	16
DIN W40 x 2 x 18	65	50	W40 x 2 x 9G	-	5480	18
DIN W45 x 2 x 21	70	55	W45 x 2 x 9G	-	5480	21
DIN W50 x 2 x 24	70	60	W50 x 2 x 9G	-	5480	24
DIN W55 x 2 x 26	75	50	W55 x 2 x 9G	-	5480	26
DIN B17 x 14 X 9	30	25	17 x 14	-	5482	9
DIN B25 x 22 x 14	42	27	25 x 22	-	5482	14
DIN B30 x 27 x 16	48	30	30 x 27	-	5482	16
DIN B35 x 31 x 18	55	32	35 x 31	-	5482	18
DIN B35 x 31 x 18 - 35	55	35	35 x 31	-	5482	18
DIN B40 x 36 x 20	70	37	40 x 36	-	5482	20
DIN B45 x 41 x 22	70	45	45 x 41	-	5482	22
DIN B45 x 41 x 22 - 50	70	50	45 x 41	-	5482	22
DIN B45 x 41 x 22 - 48	70	48	45 x 41	-	5482	22
DIN B50 x 45 x 24	80	52	50 x 45	-	5482	24

Material : En24T

Also available Japanese JIS D2001 2.5 mod/1.667 mod

Alternative materials on request.

Alternative bush sizes available.

Alternative splines on request.

External splines also available.

L Series Bellhousing

Pump Drive Components

jbj

Bellhousing	В	С	C1	D	E	1	L	М	N	0	01	R	V	к
LX09 - 1	58	89	89	34.0	40	90	7.2	75	60	-	6.0	-	64	60
LY12 - 1	68	89	89	34.0	40	120	13.0	100	80	-	7.0	-	84	60
LX10 - 1	68	89	89	34.0	40	105	8.0	85	70	-	7.0	-	74	67
LY14 - 1	68	89	89	34.0	40	140	15.0	115	95	-	9.0	-	95	67
LX12 - 1	68	89	89	34.0	40	120	10.0	100	80	-	7.0	-	84	87
LX12 - 2	90	115	115	42.0	65	120	13.0	100	80	-	7.0	-	84	95
LY16 - 1	68	89	89	34.0	40	160	15.0	130	110	-	9.0	-	110	87
LY16 - 2	88	114	149	42.0	65	160	15.0	130	110	-	9.0	-	110	95
LX14 - 1	68	89	89	34.0	40	140	15.0	115	95	-	9.0	-	95	87
LX14 - 2	88	114	114	42.0	65	140	15.0	115	95	-	9.0	-	95	95
LX16 - 2	88	113	114	42.0	65	160	15.0	130	110	-	9.0	-	110	109
LY20 - 2	88	114	114	42.0	65	200	15.0	165	130	-	11.5	-	145	109
L14 - 1	68	85	85	32.0	40	140	14.0	115	95	14	9.0	M8	95	60
L16 - 1	68	85	85	32.0	40	160	14.5	130	110	14	9.0	M8	110	67
L16 - 2	90	135	115	42.0	65	160	15.0	130	110	14	9.0	M8	110	75
L20 - 1W	68	105	105	52.5	40	200	17.5	165	130	17	11.0	M10	145	87
L20 - 2W	90	135	115	42.0	65	200	17.5	165	130	17	11.0	M10	145	95
L20 - 2U	90	135	115	42.0	80	200	17.5	165	130	17	11.0	M10	145	95
L20 - 0U	90	135	115	42.0	80	200	15.0	165	130	17	11.0	M10	145	95
L20 - SU	90	135	115	42.0	80	200	17.5	165	130	17	11.0	M10	145	100
L20 - 0F	68	89	89	34.0	30	200	15.0	165	130	17	11.0	M10	145	82
L25 - 2W	90	135	115	42.0	65	250	21.5	215	180	20	13.0	M12	190	109
L25 - 2U	90	135	115	42.0	80	250	21.5	215	180	20	13.0	M12	190	109
L25 - 0U	90	135	115	42.0	80	250	21.0	215	180	20	13.0	M12	190	109
L25 - SU	90	135	115	42.0	80	250	21.5	215	180	20	13.0	M12	190	114
L30 - 2U	90	135	115	42.0	80	300	23.0	265	230	20	13.0	M12	234	130
L30 - OU	90	135	115	42.0	80	300	21.5	265	230	20	13.0	M12	234	130

Because of the variety of pumps that our bellhousings cater for the dimensions in the tables apply only to bellhousings with unmachined pump face detail. Details missing are the pump spigot and fixings.

Spigots smaller than ${}^{\rm '}{\rm E}{}^{\rm '}$ dimensions are obtained by the use of steel adaptor rings.

L Series Pump Adaptors

Pump Drive Components

jbi

FR12/026/033

33

160.0

127.0

-

M12

su

36

Pump Drive Components

RV Series Bellhousing (VDMA Std.)

Permitted Load for Damped Bellhousings

		Perr and Damping F	nitted Load for Da lange Calculated	ampened Bellhou at Operating Tem	ising perature of 60°C		
	Bellhous	sing with Integrat Reduction Flang	ed Noise e	Damping Flange			
F zul.	RV250	RV300	RV350	DV400/1N	DF400/1N	DF400/1H	
Centre to Centre Spacing (mm)	100	100	200	300	300	300	
Permitted Load F (N)	400	1300	1000	2500	2500	4000	

For other centre to centre spacing Lx, the permitted weight T_{perm} can be calculated using the following approximated formula:

 $Fzul.[N] = F[N] + 0.5 F(\frac{L(mm)}{Lx(mm)} - 1)$ Maximum operating temperature permitted + 80°C, for short periods + 100°C

Monobloc-Bellhousings with noise damper acc. to VDMA 24 561

It's a well known fact, that manufacturers of hydraulic accessories have no influence at all upon the noise characteristics of a pump. The influencing of airborne, structure borne and liquid sound is incumbent on the pump design engineer himself. The noise characteristics of a pump – consisting

of basic frequency and harmonic waves – can become very annoying when the structure borne noise of the hydraulic unit and the integrated elements of the machine are combined. The flow vibration of a pump combined with it's pressure vibration, can cause a particularly unpleasant resonance of the structure, which in itself cannot always be calculated, even by means of a sound pressure level monitoring in form of a dB(a) value.

In order to prevent the reproduction of this vibration into other integrated elements of the structure, it is necessary to isolate the structure borne noise. This is achieved by the use of flexible drive couplings, flexible connections on pipe work and also by the use of bellhousings with integrated noise / vibration reduction flanges.

Damping flanges of this type consist of an elastomeric element, which isolates the metallic contact between the pump and other elements of the hydraulic unit. Our associate company, Raja-Lovejoy manufactures and distributes damping flanges for the reduction of noise within hydraulic units. With many years of experience within this field, a monobloc bellhousing system with integrated noise damping has been developed, (top left drawing, page 39), which offers a simples solution against conventional solutions. The connection between the noise damping ring and the bellhousing is of moulded design using a form conclusive and vulcanised elastomer compound and is designed to avoid rotation and radial wind up. The design provides a noticeable improvement in stiffness, resulting in a tensile strength of 56 kN, (based upon a monoblock bellhousing with a motor flange diameter of 300mm and is suitable for use with an electric motor with frame size D132). The higher stiffness results in reduced shaft misalignment and increases the service life of the drive coupling.

The noise damping effect of the monobloc bellhousing is effected by the installation as well as the noise characteristics of the pump. The more annoying the pumps noise the higher the damping degree will be. The spectrum of sound level reduction

generally lies between 3 dB(a) in the case of less noisy pumps (Fig. 1) and more than 10 dB(a) by pumps (Fig. 2), which produce higher levels of noise.

jbi

www.jbj.co.uk

RV Bellhousings

Rigid Version RV Ø D = 160 - 350 mm according to VDMA 24 561 Ød2 (0) ŕ ØD. 19 LL. 00 ØD. ØD, œ OD. Shaftend D Power Туре Frame Size Footbracket D1 D2 D3 D4 d1 d2 L L1 F G G1 H2 хI kW mm RV160/80/... 0.25 80 71 14 x 30 PTFL160 160 130 110 110 21 107 13 4 9 M8 8.5 RV160/90/... 0.37 90 RV200/100/... 80 0.55-0.75 19 x 40 100 RV200/110/... 129 110 RV200/118/... PTFL200 200 165 130 145 36 118 16 5 11 M10 12.5 90 S+L 1.1 - 1.5 24 x 50 RV200/124/... 124 128 RV200/140/... 140 RV250/120/... 100L 2.2 - 3.0 PTFL250 120 RV250/124/... 124 178 RV250/128/... 128 190 45 5 14.5 28 x 60 250 215 180 19 14 M12 RV250/135/... 112M 4 PTFS250 135 RV250/148/... 172 148 RV 250/175/... 176 175 RV300/144/... 132S 5.5 PTFL300 222 144 RV300/150/... 150 221 RV300/155/... 300 265 230 50 5 38 x 80 234 155 20 14 M12 18 PTFS300 132M 75 RV300/168/... 220 168 RV300/196/... 217 196 RV350/188/... 160M+L 11 - 15 42 x 110 41 236 188 RV350/204/... 53 234 204 PTFS350 250 260 M16 18 350 300 26 6 18 RV350/228/... 18.5 x 22 48 x 110 70 180M+L 232 228 RV350/256/... 90 230 256 RV400/204/... 265 204 RV400/228/... 200L 30 55 x 110 PTFS400 400 350 300 300 50 262 228 26 6 18 M16 20 RV400/256/.. 259 256 RV450/234/... 225S 37 301 234 RV450/262/... 297 262 60 X 140 PTFS450 450 400 350 350 80 26 6 18 M16 20 RV450/285/... 225M 45 285 276 RV450/315/... 315 RV550/248/... 250M 55 65 x 140 362 248 RV550/265/... 359 265 RV550/275/... PTS5500 550 500 450 450 80 275 26 6 18 M16 20 280S+M 75 - 90 75 x 140 RV550/295/... 276 295 RV550/315/... 315 RV660/310/... 110 - 132 414 310 RV660/330/... 315S+M+L PTS660 660 600 550 550 80 330 32 M20 20 80 x 170 6 23 160 - 200 276 RV660/345/... 345 RV800/315/...* 355+L 468 250 - 315 95 x 170 315 RV800/335/...* 335 474 800 740 680 680 125 10 23 M20 35 60 RV800/350/...* 400L 485 350 355 - 400 100 x 210 RV800/443/...* 490 443

Bellhousings with flange Ø D1 = 160 mm according to VDMA 24 561 only in rigid version. Noise reduction version with flange Ø D1 = 200 mm with screwed damping flange on request.

Pump Drive Components

RV Bellhousings with noise reduction

jbj —															_	
Mc	000000-system Ø D1 = 2 VDMA 24 561 000 000 000 000 000	em, noise red 50 - 350 mm form fitting w 4	uction ithout screw jo	oint			e))		No RV/	ise redu Ø D' /DF35 //DF40	S	ersion, 2 - 800 mn <u>Ød</u> 	P-piece	/	400
Туре	Frame Size	Power kW	Shaftend D x I (mm)	Footbracket	D1	D2	D3	D4	d1	d3	L	L1	F	G	G1	H2
				Monoblo	c syster	n, noise	reducti	on vers	ion							
RV160/80/	71	0.25	14 x 30	PTFI 160	160	130	110	110	21		80	13	4	9	M8	8.5
RV160/90/	, ,	0.37		1 11 2100	100	100	110	110	21		90	10			MIG	0.0
RV200/100/	80	0.55-0.75	19 x 40							-	100					
RV200/110/					20.0	165	120	115	26	-	110	16	5	11	M10	12.5
RV200/118/	90 S+L	1.1 - 1.5	24 x 50	FIFLZUU	200	105	130	145	30	-	124	10	5	11	WITU	12.5
RV200/124/										-	140					
RV250/120/	100L	2.2 - 3.0		PTFL250							120					
RV250/124/										-	124					
RV250/128/ RV250/135/	112M	4	28 x 60	PTFS250	250	215	180	190	45	172	128 135	19	5	14	M12	14.5
RV250/148/											148					
RV 250/175/											175					
RV300/144/	132S	5.5		PTFL300							144					
RV300/150/											150					
RV300/155/	132M	7.5	38 x 80	PTFS300	300	265	230	234	50	217	155	20	5	14	M12	18
RV300/168/	-									-	168					
RV300/196/											196					
RV350/188/	160M+L	11 - 15	42 x 110						41	231	188					
RV350/204/	190141	19 5 1 22	19 y 110	PTFS350	350	300	250	260	53	220	204	26	6	18	M16	18
RV350/226/	100IVI+L	10.3 X 22	40 X 110						90	220	220					
10000/200/				Nois	se reduo	ction ve	rsion. 2-	piece	50	220	200					
RV400/204/							, _			260	204					
RV400/228/	200L	30	55 x 110	PTFS400	400	350	300	300	50	(DF350)	228	26	6	18	M16	20
RV400/256/										283	256					
RV450/234/	225S	37								(DV400)	234					
RV450/262/			60 X 140	PTFS450	450	400	350	350	80		262	26	6	18	M16	20
RV450/285/	225M	45								-	285		-			
RV450/315/	05014		05 - 440								315					
RV550/248/	250M	55	65 x 140							-	248					
RV550/205/				PT\$5500	550	500	450	450	80	362	200 275	26	6	18	M16	20
RV550/295/	280S+M	75 - 90	75 x 140	1 100000	550			-100	00	(DF400)	295	20		10	WITU	20
RV550/315/											315					
RV660/310/		110 - 132									310					
RV660/330/	315S+M+L	160 000	80 x 170	PTS660	660	600	550	550	80		330	32	6	23	M20	20
RV660/345/	1	160 - 200									345					
RV800/315/*	355+L	250 - 315	95 x 170								315					
RV800/335/*				_	800	740	680	680	125		335	60	10	23	M20	35
RV800/350/*	400L	355 - 400	100 x 210		000			000	120		350			20	11120	
RV800/443/*											443					

*Not included in the VDMA standard

Bellhousings with flange Ø D1 = 160 mm according to VDMA 24 561 only in rigid version. Noise reduction version with flange Ø D1 = 200 mm with screwed damping flange on request.

www.jbj.co.uk Module 3 Bellhousing

Pump Drive Components

How it works

A range of composite bellhousings to accomodate electric motor flanges from 300mm diameter to 800mm diameter.

jbj

www.jbj.co.uk

Base Module Detail

www.jbj.co.uk Central Adaptor Detail

Pump Drive Components

jbj

www.jbj.co.uk **Popular Pump Flange Details**

Ordering Code

www.jbj.co.uk Popular Machining Codes

jbj –							
			Oval Fixing				
Code	No.		F	PCD		С	
023	2		M10	125.00		100.0	
060	2		M10	106.40		82.5	_
070	2		M12	146.00		101.6	
071	2		M12	140.00		100.0	
074	2		M12	140.00		112.0	
075	2		M12	145.60		100.0	c + (- + - + +
080	2		M16	181.20		127.0	
081	2		M12	180.00		140.0	
002	2		M20	224.00		125.0	
106	2		M10	126.00		100.0	TTF
117	2		M24	280.00		200.0	
145	2		M24	317.35		165.1	
166	2		M20	228.00		152.4	
		F	our Bolt Fixi	na			
Code	No.		F	PCD		С	
021	4		M12	161.50		127.0	
025	4		M10	125.00		100.0	
026	4		M12	160.00		125.0	
027	4		M16	200.00		160.0	
028	4		M20	250.00		200.0	
068	4		M12	150.00		130.0	L Coopi J
069	4		M16	185.00		150.0	C + (FCO) +
077	4		M12	180.00		140.0	
0/8	4		M16	216.00		180.0	
100	4		M16	228.60		192.4	
12	4		M12	127.00		100.0	
143	4		M20	317 35		165.1	
140	4		M20	280.00		224.0	
146	4		M24	350.00		177.8	
		·	Face Fixing				
Code	No.		F	PCD		С	
031	4		13	125.0		100.0	
033	4		13	160.0		125.0	
035	4		17	200.0		160.0	
095	4		22	250.0		200.0	C PCD
116	4		11	125.4		98.5	
118	4		17	217.5		152.4	
							F
		Re	ectangular Fix	ing			
Code	No.	F	PB	PD	PC	С	
002	4	M6	52.4	26.5	72.0	25.4	F C
003	4	M6	56.0	24.5	73.0	30.0	
004	4	M8	71.5	32.5	96.0	36.5	
005	4	M8	98.5	43.0	128.0	50.8	
000	4	M10	90.0	45.0	1/20	δ.UC 60.0	
008	4 4	M10	114 3	40.2	140.0	60.3	
009	4	M10	105.5	52.5	153.0	101.6	
010	4	M12	142.8	65.1	196.0	63.5	
011	4	M12	143.0	64.3	188.0	63.5	
012	4	M6	71.5	32.5	96.0	36.5	
014	4	M8	72.0	34.0	100.0	80.0	PB
015	4	M10	102.0	48.0	145.0	105.0	
016	4	M10	124.0	50.0	164.0	85.0	

NB. Other machine codes available on request. For details please contact

jbj Techniques Limited technical office,

telephone: 01737 767493 or email: info@jbj.co.uk

Pump Drive Components

Cooler Bellhousings Series KPV

jbj

Technical Data

Working Pressur	e	Load cycles				Maximum Static Pressure			
16 bar		1 x 10 ⁶ ; f = 2 Hz				40 bar			
Cooler Type	Cooling Capa P (kW) ∆t = 4	icity 0°C	Power E-Motor (kW) n = 1500 1 rpm (1)	Airflow (m³/h)		Fan Input Power (W)	Noise Level ⁽²⁾ (dB(A))		
KPV200	0.95		0.55 - 1.5	72		20	52		
KPV250	2.10		2.2 - 4.0	260		30	58		
KPV300	3.22		5.5 - 7.5	430		90	69		
KPV350	5.15		11 - 22	780		140	70		

188 204

228 256

KPV350

• Nominal rotation (1) of driven machine 1500 rev/min. In case of different rpm please contact jbj Techniques Technical Office.

• Noise levels⁽²⁾ of damped version are measured with a bellhousing and electric motor distance to the tested object of 1m. The

values of noise level will vary depending on the electric motor used.

Direction of pump rotation always clockwise, looking on pump shaft.

Ray

Pump Drive Components

Cooler Bellhousings Series KPV

KPV200	80	0.55 0.75	19 x 24	100 110 118	88	10.3	6*	122.5	205	141	241	70	180.5	200	130	165	145	11	10	G½
	90 S + L	1.1 1.5	24 x 50	124 128																
KPV250	100L	2.2 3.0	28 x 60	120 124 128	108.5	26	6	144.5	267	174	326	102	192	250	180	215	190	14	12	G¾
	112M	4.0		135 148 175																
KPV300	132 S + M	5.5 7.5	38 x 80	144 150 155 168 196	128.5	6	10	168.5	267	200	350	126	234.5	300	230	265	234	14	12	G¾
KDV250	160 M + L	11 15	42 x 110	188 204	161	4	7.5	10.9	216	220	40.2	156	252	250	250	200	260	10	16	C3/
KF V 330	180 M + L	18.5 22.0	48 x 110	228 256	101	4	7.5	190	310	220	403	150	252	350	250	300	200	10	10	674

Pump Drive Components

jb

Cooler Bellhousings Series KPV

Specific cooling capacity depending on oil flow Q (I/min) and the temperature difference Δt 2°C (Oil inlet and air inlet)

Pressure drop of cooler matrix at the oil viscosity of 32 cSt

Correction Factor k for Dp Values at Varying Viscosities in cSt												
kSt	15	22	32	46	68	100	150	220	460			
k	k 0.64 0.73 1.0 1.28 1.62 2.65 3.9 6.9 17.1											

Pump Drive Components

jbj

Material cast aluminium

Pump Drive Components

PTFL & PTFS Series Foot Brackets

Standard material - Cast Aluminium

Foot Mount Brackets for Hydraulic Pumps & Motors FM Series

Foot Brackets/Mountingplates

Pump Drive Components

jbj

Standard material - Cast Aluminium

	Gasket 1										
Tuno	Dimensions (mm)										
туре	D	D1	D2	D3							
D 140 NBR	140	115	97	10							
D 160 NBR	160	130	112	10							
D 200 NBR	200	165	147	12							
D 250 NBR	250	215	193	14							
D 300 NBR	300	265	245	14							
D 350 NBR	350	300	270	19							
D 400 NBR	400	350	303	19							
D 450 NBR	450	400	353	19							
D 550 NBR	550	500	453	19							
D 660 NBR	660	600	554	24							

Gasket 2											
Tuno			Dimensions (mm)								
Туре	L	L1	L2	L3	R	D					
D 325 NBR	325	250	200	140	60	10					
D 355 NBR	350	300	250	140	60	10					
D 420 NBR	420	360	300	150	90	15					
D 475 NBR	475	410	350	160	110	20					

jbj

www.jbj.co.uk Petrol Engine Adaptors

Part No: PED 1/- - -/110

To suit: Honda, Briggs & Stratton, Kawasaki, Mag, Robin, Suzuki, Winsconsin, etc. Units can be machined to suit most hydraulic pump mountings.

Part No: LTO 414/- - -/140

To suit: Honda, Briggs & Stratton, Kubota, etc.

Units can be machined to suit most hydraulic pump mountings.

Part No: PED 3/- - -/160 (STD Spigot), PED 3X/- - -/160 (Optional spigot)

To suit: Honda, Briggs & Stratton, Kawasaki, Mag, Robin, Suzuki, Winsconsin, etc.

Units can be machined to suit most hydraulic pump mountings.

www.jbj.co.uk

Petrol Engine Adaptors

Part No: LTOC95/- - -/140

To suit: Kubota OC95 engine.

Units can be machined to suit most hydraulic pump mountings.

Part No: LTO1B40/- - -/140

To suit: Hatz 1B40 engine. Units can be machined to suit most hydraulic pump mountings.

Adaptors to suit engine camshaft drives and for vertical mounting available on request. Please contact jbj Techniques technical office, telephone: 01737 767493 or email: info@jbj.co.uk

Additional reference catalogues

Compatible couplings - **Pump Drive Components** catalogue and **Torsional Couplings** catalogue Diesel engine adaptors - **Pump Drives** catalogue and **Torsional Couplings** catalogue

For pump mounting machine codes and adaptors please refer to back page of this leaflet.

Pump face machining codes (- - -)

	Rectangular Adaptor Flange												
Code	No. off	F	PB	PD	PC	С							
002	4	M6	52.4	26.5	72.0	25.4							
003	4	M6	56.0	24.5	73.0	30.0							
004	4	M8	71.5	32.5	96.0	36.5							
005	4	M8	98.5	43.0	128.0	50.8							
006	4	M10	98.5	45.0	137.0	50.8							
007	4	M12	127.0	48.2	148.0	60.0							
008	4	M10	114.3	49.3	149.4	60.3							
009	4	M10	105.5	52.5	153.0	101.6							
010	4	M12	142.8	65.1	196.0	63.5							
011	4	M12	143.0	64.3	188.0	63.5							
012	4	M6	71.5	32.5	96.0	36.5							
014	4	M8	72.0	34.0	100.0	80.0							
015	4	M10	102.0	48.0	145.0	105.0							
016	4	M10	124.0	50.0	164.0	85.0							

1K1		Squ	are Adaptor Flange		
2 Della	Flange Ref.	К	PCD	Е	F
	FR12/025/020	23	125.0	100.0	M10
- PCDI	FR12/125/023	23	127.0	101.6	M12
	FR12/021/025	25	161.5	127.0	M12
	FR12/026/025	25	160.0	125.0	M12
	FR12/021/033	33	161.5	127.0	M12
F	FR12/026/033	33	160.0	127.0	M12

		Ov	al Adaptor Flange		
	Flange Ref.	к	PCD	E	F
	FR12/060/023	23	106.4	82.55	M10
	FR12/042/023	23	100.0	63.00	M8
K	FR12/063/023	23	110.0	80.00	M10
-15	FR12/066/023	23	106.4	85.00	M10
	FR12/083/023	23	106.4	80.00	M10
	FR12/070/023	23	146.0	101.60	M12
	FR12/023/023	23	125.0	100.00	M10
E + (· -+)]]	FR12/076/023	23	146.0	105.00	M12
	FR12/075/023	23	146.0	100.00	M12
	FR12/072/023	23	140.0	100.00	M12
	FR12/071/023	23	125.0	100.00	M12
	FR12/074/023	23	140.0	112.00	M12
	FR12/060/035	35	106.4	82.55	M10
	FR12/063/035	35	110.0	80.00	M10
	FR12/065/035	35	115.0	80.00	M10
	FR12/080/025	25	181.2	127.00	M16
	FR12/082/025	25	180.0	125.00	M16

an excellence in engineering

www.jbj.co.uk/couplings.html

Mechanical power transmission couplings

- 1) What is your application?
- 2) Which power transmission coupling would best serve your purpose?
- 3) Which size & specification of coupling will safely and cost effectively fulfill your requirements?

jbj Techniques provide:

- » An extensive range of couplings for mechanical power transmission.
- » Many standard types and sizes held in stock for quick despatch.
- » Technical expertise and in-house machining facilities for minor customisation or full bespoke couplings.
- » A wide range of coupling types to fulfill the requirements of a vast range of applications.

Ranging from miniature couplings, all steel gear couplings, flexible spider couplings, shaft couplings, torque limiting couplings, disc and grid type couplings, ATEX compliant and shaft locking devices. Magnetic couplings for power transmission between hermetically sealed areas.

There are a range of criteria (<u>link to selection table</u>) in specifying the most suitable coupling for your application but the jbj Techniques technical department will guide you all the way to specify the right coupling for power transmission.

Questions? jbj Techniques Limited technical office telephone: 01737 767493 email: info@jbj.co.uk

Steel Gear Couplings

Grid Couplings

jbj Techniques is a specialist supplier of high-quality products for the mechanical power transmission and fluid power sectors. The company offers a high level of in-house expertise plus a huge selection of products to meet a very broad range of customer applications. From specification, through technical advice and manufacture to after-sales support, jbj Techniques provides a comprehensive and valued service to the power transmission and hydraulics industries. The company fields a UK-wide team of technical sales engineers to ensure that the business is close to its customers, and it enjoys excellent associations with European manufacturers, acting as sole UK distributor in many cases.

jbj's team is recognised for its expertise in the selection and configuration of hydraulic and mechanical transmission systems. Able to draw on an extensive product range that provides the building blocks for bespoke systems both large and small, the in-house design team offers a complete service, ranging from an assessment of customer requirements to full technical backup, including product specification, CAD based system design, system build and certification. Moreover, customers can take advantage of jbj's own machineshop facilities and skilled engineers to guarantee quality and control costs.

jbj Techniques provides probably the widest range of couplings available within the UK with 14 different designs and 22 different styles of gear couplings alone. The product portfolio includes miniature couplings, allsteel gear couplings, flexible spider couplings, shaft couplings, torque limiting couplings, disc and grid type couplings, ATEX compliant and shaft locking devices. However, as extensive as the selection is, couplings make up a fraction of jbj's portfolio. In addition, the company can provide gearboxes, clutches, pumps, hydraulic motors, flowmeters, fluid power accessories - including cooling systems, reservoirs, seals and indicators - as well as a variety of bell housings and flanges, to name just a few of the product categories.

jbj Techniques Limited is proud of it's relationship and reputation with customers and suppliers. The core client base is stable and loyal, which is testament to the quality of service provided by the company. A similar relationship exists with suppliers, ensuring a continuing high-quality service in which customers can have complete confidence. jbj Techniques Limited

providing . . . a diverse range of mechanical drive & transmission solutions to industrial markets, including design engineering, product supply & after-sales service . . .

G as extensive as the selection is, couplings make up a fraction of jbj's portfolio

66 ensuring a continuing highquality service in which customers can have complete confidence. **75**

from Small Individual Components

to Large Combinations

comprehensive range of components www.jbj.co.uk

Flow Dividers

BDS Clut

jbj Techniques Limited is ISO certificated, committed to international coordination & unification of industrial standards.

Flanges

Range of ATEX certificated

Oil Bath Clut

Tanks/Accessories

jbj Techniques Limited 28 Trowers Way Holmethorpe Industrial Estate Redhill Surrey RH1 2LW. UNITED KINGDOM

quality products for mechanical & fluid power

() info@jbj.co.uk

You

Tube

www.jbj.co.uk

jbj Techniques Limited is ISO certificated, committed to international coordination & unification of industrial standards.

registered in England No: 1185469

5

A range of products ATEX certificated to directive 94/9/EC requirements

set by James Harris, jbj Techniques Limited

8